31 research outputs found

    Myotonic Dystrophy Initially Presenting as Tachycardiomyopathy Successful Catheter Ablation of Atrial Flutter

    Get PDF
    Myotonic dystrophy is a genetic muscular disease that is frequently associated with cardiac arrhythmias. Bradyarrhythmias, such as sinus bradycardia and atrioventricular block, are more common than tachyarrhythmias. Rarely, previously undiagnosed patients with myotonic dystrophy initially present with a tachyarrhythmia. We describe the case of a 14-year-old boy, who was admitted to the hospital with clinical signs and symptoms of decompensated heart failure and severely reduced left ventricular function. Electrocardiography showed common-type atrial flutter with 2 : 1 conduction resulting in a heart rate of 160 bpm. Initiation of medical therapy for heart failure as well as electrical cardioversion led to a marked clinical improvement. Catheter ablation of atrial flutter was performed to prevent future cardiac decompensations and to prevent development of tachymyopathy. Left ventricular function normalized during followup. Genetic analysis confirmed the clinical suspicion of myotonic dystrophy as known in other family members in this case

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    First prospective, multi-centre clinical experience with a novel left ventricular quadripolar lead.

    No full text
    Abstract AIMS: Cardiac resynchronization therapy (CRT) is sometimes complicated by elevated pacing thresholds and phrenic nerve stimulation (PNS), both of which may require that the coronary sinus lead be repositioned. The purpose of this study was to evaluate the performance of a novel quadripolar electrode lead and cardiac resynchronization therapy-defibrillator (CRT-D) device that enables electrical repositioning, potentially obviating a lead reposition procedure. METHODS AND RESULTS: Patients indicated for CRT were enrolled and received a quadripolar electrode lead and CRT-D device (Quartetmodel 1458Q and Promote Q; St Jude Medical, Sylmar, CA, USA). Electrical data, and the presence of PNS during pacing from each left ventricular (LV) configuration, were documented at pre-hospital discharge and at 1 month. Seventy-five patients were enrolled and 71 were successfully implanted with a Quartetlead. Electrical measurements were stable over the follow-up period. Ninety-seven per cent (64 of 66) of patients had one or more programmable configurations with a threshold < 2.5 V and no PNS vs. 86% (57 of 66) if only conventional bipolar configurations were considered. Physicians were able to use the increased programming options to manage threshold changes and PNS. CONCLUSION: The new quadripolar electrode LV lead provides more programming options to address common problems faced when managing CRT patients. Electrical measurements from new vectors are comparable with conventional configurations. Furthermore, 11% of patients in the study suffered PNS on all conventional bipolar vector
    corecore