266 research outputs found

    ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice

    Get PDF
    Expansion of a tandem repeat tract is responsible for the Repeat Expansion diseases, a group of more than 20 human genetic disorders that includes those like Fragile X (FX) syndrome that result from repeat expansion in the FMR1 gene. We have previously shown that the ATM and Rad3-related (ATR) checkpoint kinase protects the genome against one type of repeat expansion in a FX premutation mouse model. By crossing the FX premutation mice to Ataxia Telangiectasia-Mutated (Atm) mutant mice, we show here that ATM also prevents repeat expansion. However, our data suggest that the ATM-sensitive mechanism is different from the ATR-sensitive one. Specifically, the effect of the ATM deficiency is more marked when the premutation allele is paternally transmitted and expansions occur more frequently in male offspring regardless of the Atm genotype of the offspring. The gender effect is most consistent with a repair event occurring in the early embryo that is more efficient in females, perhaps as a result of the action of an X-linked DNA repair gene. Our data thus support the hypothesis that two different mechanisms of FX repeat expansion exist, an ATR-sensitive mechanism seen on maternal transmission and an ATM-sensitive mechanism that shows a male expansion bias

    Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R) and its ligand the tuberoinfundibular peptide of 39 residues (TIP39) by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH) and parathyroid hormone related protein (PTHrP) are compared with the complex to examine their interactions.</p> <p>Findings</p> <p>In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation.</p> <p>Conclusions</p> <p>A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.</p

    The role of DNA damage response pathways in chromosome fragility in Fragile X syndrome

    Get PDF
    FRAXA is one of a number of fragile sites in human chromosomes that are induced by agents like fluorodeoxyuridine (FdU) that affect intracellular thymidylate levels. FRAXA coincides with a >200 CGG•CCG repeat tract in the 5′ UTR of the FMR1 gene, and alleles prone to fragility are associated with Fragile X (FX) syndrome, one of the leading genetic causes of intellectual disability. Using siRNA depletion, we show that ATR is involved in protecting the genome against FdU-induced chromosome fragility. We also show that FdU increases the number of γ-H2AX foci seen in both normal and patient cells and increases the frequency with which the FMR1 gene colocalizes with these foci in patient cells. In the presence of FdU and KU55933, an ATM inhibitor, the incidence of chromosome fragility is reduced, suggesting that ATM contributes to FdU-induced chromosome fragility. Since both ATR and ATM are involved in preventing aphidicolin-sensitive fragile sites, our data suggest that the lesions responsible for aphidicolin-induced and FdU-induced fragile sites differ. FRAXA also displays a second form of chromosome fragility in absence of FdU, which our data suggest is normally prevented by an ATM-dependent process

    Predicting hospital cost in CKD patients through blood chemistry values

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Controversy exists in predicting costly hospitalization in patients with chronic kidney disease and co-morbid conditions. We therefore tested associations between serum chemistry values and the occurrence of in-patient hospital costs over a thirteen month study period. Secondarily, we derived a linear combination of variables to estimate probability of such occurrences in any patient.</p> <p>Method</p> <p>We calculated parsimonious values for select variables associated with in-patient hospitalization and compared sensitivity and specificity of these models to ordinal staging of renal disease.</p> <p>Data from 1104 de-identified patients which included 18 blood chemistry observations along with complete claims data for all medical expenses.</p> <p>We employed multivariable logistic regression for serum chemistry values significantly associated with in-patient hospital costs exceeding $3,000 in any single month and contrasted those results to other models by ROC area curves.</p> <p>Results</p> <p>The linear combination of weighted Z scores for parathyroid hormone, phosphorus, and albumin correlated with in-patient hospital care at p < 0.005. ROC curves derived from weighted variables of age, eGFR, hemoglobin, albumin, creatinine, and alanine aminotransferase demonstrated significance over models based on non-weighted Z scores for those same variables or CKD stage alone. In contrast, the linear combination of weighted PTH, PO4 and albumin demonstrated better prediction, but not significance over non-weighted Z scores for PTH alone.</p> <p>Conclusion</p> <p>Further study is justified to explore indices that predict costly hospitalization. Such metrics could assist Accountable Care Organizations in evaluating risk adjusted compensation for providers.</p

    Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI)

    Get PDF
    Fragile X-associated primary ovarian insufficiency (FXPOI) is among the family of disorders caused by the expansion of a CGG repeat sequence in the 5' untranslated region of the X-linked gene FMR1. About 20% of women who carry the premutation allele (55 to 200 unmethylated CGG repeats) develop hypergonadotropic hypogonadism and cease menstruating before age 40. Some proportion of those who are still cycling show hormonal profiles indicative of ovarian dysfunction. FXPOI leads to subfertility and an increased risk of medical conditions associated with early estrogen deficiency. Little progress has been made in understanding the etiology of this clinically significant disorder. Understanding the molecular mechanisms of FXPOI requires a detailed knowledge of ovarian FMR1 mRNA and FMRP's function. In humans, non-invasive methods to discriminate the mechanisms of the premutation on ovarian function are not available, thus necessitating the development of model systems. Vertebrate (mouse and rat) and invertebrate (Drosophila melanogaster) animal studies for the FMR1 premutation and ovarian function exist and have been instrumental in advancing our understanding of the disease phenotype. For example, rodent models have shown that FMRP is highly expressed in oocytes where it is important for folliculogenesis. The two premutation mouse models studied to date show evidence of ovarian dysfunction and, together, suggest that the long repeat in the transcript itself may have some pathological effect quite apart from any effect of the toxic protein. Further, ovarian morphology in young animals appears normal and the primordial follicle pool size does not differ from that of wild-type animals. However, there is a progressive premature decline in the levels of most follicle classes. Observations also include granulosa cell abnormalities and altered gene expression patterns. Further comparisons of these models are now needed to gain insight into the etiology of the ovarian dysfunction. Premutation model systems in non-human primates and those based on induced pluripotent stem cells show particular promise and will complement current models. Here, we review the characterization of the current models and describe the development and potential of the new models. Finally, we will discuss some of the molecular mechanisms that might be responsible for FXPOI

    The reach and impact of social marketing and reproductive health communication campaigns in Zambia

    Get PDF
    Background: Like many sub-Saharan African countries, Zambia is dealing with major health issues, including HIV/AIDS, family planning, and reproductive health. To address reproductive health problems and the HIV/AIDS epidemic in Zambia, several social marketing and health communication programs focusing on reproductive and HIV/AIDS prevention programs are being implemented. This paper describes the reach of these programs and assesses their impact on condom use. Methods: This paper assesses the reach of selected radio and television programs about family planning and HIV/AIDS and of communications about the socially marketed Maximum condoms in Zambia, as well as their impact on condom use, using data from the 2001-2002 Zambia Demographic and Health Survey. To control for self-selection and endogeneity, we use a two-stage regression model to estimate the effect of program exposure on the behavioural outcomes. Results: Those who were exposed to radio and television programs about family planning and HIV/AIDS were more likely to have ever used a condom (OR = 1.16 for men and 1.06 for women). Men highly exposed to Maximum condoms social marketing communication were more likely than those with low exposure to the program to have ever used a condom (OR = 1.48), and to have used a condom at their last sexual intercourse (OR = 1.23). Conclusion: Findings suggest that the reproductive health and social marketing campaigns in Zambia reached a large portion of the population and had a significant impact on condom use. The results suggest that future reproductive health communication campaigns that invest in radio programming may be more effective than those investing in television programming, and that future campaigns should seek to increase their impact among women, perhaps by focusing on the specific constrains that prevent females from using condoms

    Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Glucose Production via the Hepatic Sympathetic Innervation in Rats

    Get PDF
    OBJECTIVE-The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). RESEARCH DESIGN AND METHODS-Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. LTS-Intracerebroventiicular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. CONCLUSIONS-This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production. Diabetes 59: 1591-1600, 201

    Epigenetic profile of the euchromatic region of human Y chromosome

    Get PDF
    The genome of a multi-cellular organism acquires various functional capabilities in different cell types by means of distinct chromatin modifications and packaging states. Acquired during early development, the cell type-specific epigenotype is maintained by cellular memory mechanisms that involve epigenetic modifications. Here we present the epigenetic status of the euchromatic region of the human Y chromosome that has mostly been ignored in earlier whole genome epigenetic mapping studies. Using ChIP-on-chip approach, we mapped H3K9ac, H3K9me3, H3K27me3 modifications and CTCF binding sites while DNA methylation analysis of selected CpG islands was done using bisulfite sequencing. The global pattern of histone modifications observed on the Y chromosome reflects the functional state and evolutionary history of the sequences that constitute it. The combination of histone and DNA modifications, along with CTCF association in some cases, reveals the transcriptional potential of all protein coding genes including the sex-determining gene SRY and the oncogene TSPY. We also observe preferential association of histone marks with different tandem repeats, suggesting their importance in genome organization and gene regulation. Our results present the first large scale epigenetic analysis of the human Y chromosome and link a number of cis-elements to epigenetic regulatory mechanisms, enabling an understanding of such mechanisms in Y chromosome linked disorders

    DMSO and Betaine Greatly Improve Amplification of GC-Rich Constructs in De Novo Synthesis

    Get PDF
    In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application
    corecore