40 research outputs found

    Evolution of the progenitor binary of V1309 Scorpii before merger

    Full text link
    It was recently demonstrated that the eruption of V1309 Sco was a result of a merger of the components of a cool contact binary. We computed a set of evolutionary models of the detached binaries with different initial parameters to compare it with pre-burst observations of V1309 Sco. The models are based on our recently developed evolutionary model of the formation of cool contact binaries. The best agreement with observations was obtained for binaries with initial masses of 1.8-2.0 solar masses and initial periods of 2.5-3.1 d. The evolution of these binaries consists of three phases: at first the binary is detached and both components lose mass and angular momentum through a magnetized wind. This takes almost two thirds of the total evolutionary lifetime. The remaining third is spent in a semi-detached configuration of the Algol-type, following the Roche-lobe overflow by the initially more massive component. When the other component leaves the main sequence and moves toward the giant branch, a contact configuration is formed for a short time, followed by the coalescence of both components.Comment: 5 pages, 1 figure, Astronomy and Astrophysics, in prin

    Effective temperatures of magnetic CP stars from full spectral energy distributions

    Full text link
    New determinations of effective temperatures of 23 magnetic, chemically peculiar (mCP) stars were obtained from a fit of metal enhanced model atmospheres to the observed spectral energy distributions (SED) from UV to red. The root-mean-square (RMS) method was used to fit the theoretical SED to the observations corrected for reddening if necessary, with metallicity and effective temperature as the fitting parameters. Gravity was assumed to be equal to log g = 4 for main sequence stars and to log g = 3 for two giants in the considered sample. Equal weights were given to the UV part and visual part of SED. Independently of the formal quality of fit resulting from the RMS method applied to the whole SED, the quality of fit was additionally checked for each star by determination of the temperature from the best fitting model atmosphere to the UV part and the visual part of SED separately. Both temperatures should be close to one another if the global best fitting model satisfactorily describes the full observed SED. This is the case for about a half of the investigated stars but the difference exceeds 750 K for the remaining stars with the extreme values above 2000 K. Possible reasons for such discrepancies are discussed. New, revised calibrations of effective temperature and bolometric corrections of mCP stars in terms of reddening free Stromgren indices are given.Comment: 13 pages, 5 figures, accepted to MNRA

    The Araucaria Project: accurate stellar parameters and distance to evolved eclipsing binary ASAS J180057-2333.8 in Sagittarius Arm

    Get PDF
    We have analyzed the double-lined eclipsing binary system ASAS J180057-2333.8 from the All Sky Automated Survey (ASAS) catalogue. We measure absolute physical and orbital parameters for this system based on archival V-band and I-band ASAS photometry, as well as on high-resolution spectroscopic data obtained with ESO 3.6m/HARPS and CORALIE spectrographs. The physical and orbital parameters of the system were derived with an accuracy of about 0.5-3 percent. The system is a very rare configuration of two bright well-detached giants of spectral types K1 and K4 and luminosity class II. The radii of the stars are R1 = 52.12 ± 1.38 and R2 = 67.63 ± 1.40 R⊙ and their masses are M1 = 4.914 ± 0.021 and M2 = 4.875 ± 0.021M⊙. The exquisite accuracy of 0.5 percent obtained for the masses of the components is one of the best mass determinations for giants. We derived a precise distance to the system of 2.14 ± 0.06kpc (stat.) ± 0.05 (syst.) which places the star in the Sagittarius-Carina arm. The Galactic rotational velocity of the star is Θs = 258 ± 26kms−1 assuming Θ0 = 238kms−1. A comparison with parsec isochrones places the system at the early phase of core helium burning with an age of slightly larger than 100 million years. The effect of overshooting on stellar evolutionary tracks was explored using the mesa star cod

    Basal Chromospheric Flux and Maunder Minimum-type Stars: The quiet-Sun Chromosphere as a Universal Phenomenon

    Full text link
    Aims: We demonstrate the universal character of the quiet-Sun chromosphere among inactive stars (solar-type and giants). By assessing the main physical processes, we shed new light on some common observational phenomena. Methods: We discuss measurements of the solar Mt. Wilson S-index, obtained by the Hamburg Robotic Telescope around the extreme minimum year 2009, and compare the established chromospheric basal Ca II K line flux to the Mt. Wilson S-index data of inactive ("flat activity") stars, including giants. Results: During the unusually deep and extended activity minimum of 2009, the Sun reached S-index values considerably lower than in any of its previously observed minima. In several brief periods, the Sun coincided exactly with the S-indices of inactive ("flat", presumed Maunder Minimum-type) solar analogues of the Mt. Wilson sample; at the same time, the solar visible surface was also free of any plages or remaining weak activity regions. The corresponding minimum Ca II K flux of the quiet Sun and of the presumed Maunder Minimum-type stars in the Mt. Wilson sample are found to be identical to the corresponding Ca II K chromospheric basal flux limit. Conclusions: We conclude that the quiet-Sun chromosphere is a universal phenomenon among inactive stars. Its mixed-polarity magnetic field, generated by a local, "fast" turbulent dynamo finally provides a natural explanation for the minimal soft X-ray emission observed for inactive stars. Given such a local dynamo also works for giant chromospheres, albeit on larger length scales, i.e., l ~ R/g, with R and g as stellar radius and surface gravity, respectively, the existence of giant spicular phenomena and the guidance of mechanical energy toward the acceleration zone of cool stellar winds along flux-tubes have now become traceable.Comment: 6 pages, 4 figures; Astronomy & Astrophysics (Research Note), in pres

    Feasibility study of the positronium imaging with the J-PET tomograph

    Get PDF
    A detection system of the conventional PET tomograph is set-up to record data from e+ e- annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma quantum. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of about 40 ps. Recent Positron Annihilation Lifetime Spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.Comment: accepted in PMB (http://iopscience.iop.org/article/10.1088/1361-6560/aafe20

    Study of the Sigma-nucleus potential by the (pi^-,K^+) reaction on medium-to-heavy nuclear targets

    Full text link
    In order to study the Sigma-nucleus optical potential, we measured inclusive (pi^-,K^+) spectra on medium-to-heavy nuclear targets: CH_2, Si, Ni, In and Bi. The CH_2 target was used to calibrate the excitation energy scale by using the elementary process p + pi^- -> K^+ + Sigma^-, where the C spectrum was also extracted. The calibration was done with +-0.1 MeV precision. The angular distribution of the elementary cross section was measured, and agreed well with the previous bubble chamber data, but with better statistics, and the magnitudes of the cross sections of the measured inclusive (pi^-,K^+) spectra were also well calibrated. All of the inclusive spectra were found to be similar in shape at a region near to the Sigma^- binding energy threshold, showing a weak mass-number dependence on the magnitude of the cross section. The measured spectra were compared with a theoretical calculation performed within the framework of the Distorted Wave Impulse Approximation (DWIA). It has been demonstrated that a strongly repulsive \sig-nucleus potential with a non-zero size of the imaginary part is required to reproduce the shape of the measured spectra.Comment: 21 pages, 24 figures, submitted to PR

    Nonlinearity and Topology

    Full text link
    The interplay of nonlinearity and topology results in many novel and emergent properties across a number of physical systems such as chiral magnets, nematic liquid crystals, Bose-Einstein condensates, photonics, high energy physics, etc. It also results in a wide variety of topological defects such as solitons, vortices, skyrmions, merons, hopfions, monopoles to name just a few. Interaction among and collision of these nontrivial defects itself is a topic of great interest. Curvature and underlying geometry also affect the shape, interaction and behavior of these defects. Such properties can be studied using techniques such as, e.g. the Bogomolnyi decomposition. Some applications of this interplay, e.g. in nonreciprocal photonics as well as topological materials such as Dirac and Weyl semimetals, are also elucidated
    corecore