313 research outputs found
Optimization of a high work function solution processed vanadium oxide hole-extracting layer for small molecule and polymer organic photovoltaic cells
We report a method of fabricating a high work function, solution processable vanadium oxide (V2Ox(sol)) hole-extracting layer. The atmospheric processing conditions of film preparation have a critical influence on the electronic structure and stoichiometry of the V2Ox(sol), with a direct impact on organic photovoltaic (OPV) cell performance. Combined Kelvin probe (KP) and ultraviolet photoemission spectroscopy (UPS) measurements reveal a high work function, n-type character for the thin films, analogous to previously reported thermally evaporated transition metal oxides. Additional states within the band gap of V2Ox(sol) are observed in the UPS spectra and are demonstrated using X-ray photoelectron spectroscopy (XPS) to be due to the substoichiometric nature of V2Ox(sol). The optimized V2Ox(sol) layer performance is compared directly to bare indium–tin oxide (ITO), poly(ethyleneoxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and thermally evaporated molybdenum oxide (MoOx) interfaces in both small molecule/fullerene and polymer/fullerene structures. OPV cells incorporating V2Ox(sol) are reported to achieve favorable initial cell performance and cell stability attributes
Total ozone variability and trends over the South Pole during the wintertime
The Antarctic polar vortex creates unique chemical and dynamical conditions when the stratospheric air over Antarctica is isolated from the rest of the stratosphere. As a result, stratospheric ozone within the vortex remains largely unchanged for a 5-month period from April until late August when the sunrise and extremely cold temperatures create favorable conditions for rapid ozone loss. Such prolonged stable conditions within the vortex make it possible to estimate the total ozone levels there from sparse wintertime ozone observations at the South Pole. The available records of focused Moon (FM) observations by Dobson and Brewer spectrophotometers at the Amundsen–Scott South Pole Station (for the periods 1964–2022 and 2008–2022, respectively) as well as integrated ozonesonde profiles (1986–2022) and MERRA-2 reanalysis data (1980–2022) were used to estimate the total ozone variability and long-term changes over the South Pole. Comparisons with MERRA-2 reanalysis data for the period 1980–2022 demonstrated that the uncertainties of Dobson and Brewer daily mean FM
values are about 2.5 %–4 %. Wintertime (April–August) MERRA-2 data have a bias with Dobson data of −8.5 % in 1980–2004 and 1.5 % in 2005–2022. The mean difference between wintertime Dobson and Brewer data in 2008–2022 was about 1.6 %; however, this difference can be largely explained by various systematic errors in Brewer data. The wintertime ozone values over the South Pole during the last 20 years were about 12 % below the pre-1980s level; i.e., the decline there was nearly twice as large as that over southern midlatitudes. It is probably the largest long-term ozone
decline aside from the springtime Antarctic ozone depletion. While wintertime ozone decline over the pole has hardly any impact on the environment, it can be used as an indicator to diagnose the state of the
ozone layer, particularly because it requires data from only one station.
Dobson and ozonesonde data after 2001 show a small positive, but not statistically significant, trend in ozone values of about 1.5 % per decade that is in line with the trend expected from the concentration of the ozone-depleting substances in the stratosphere.</p
Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates
Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent
Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni
Novae are thermonuclear explosions on a white dwarf surface fueled by mass
accreted from a companion star. Current physical models posit that shocked
expanding gas from the nova shell can produce X-ray emission but emission at
higher energies has not been widely expected. Here, we report the Fermi Large
Area Telescope detection of variable gamma-ray (0.1-10 GeV) emission from the
recently-detected optical nova of the symbiotic star V407 Cygni. We propose
that the material of the nova shell interacts with the dense ambient medium of
the red giant primary, and that particles can be accelerated effectively to
produce pi0 decay gamma-rays from proton-proton interactions. Emission
involving inverse Compton scattering of the red giant radiation is also
considered and is not ruled out.Comment: 38 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, A.B. Hill, P. Jean, S. Razzaque, K.S. Woo
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes
The diffuse Galactic gamma-ray emission is produced by cosmic rays (CRs)
interacting with the interstellar gas and radiation field. Measurements by the
Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton
Gamma-Ray Observatory indicated excess gamma-ray emission > 1 GeV relative to
diffuse Galactic gamma-ray emission models consistent with directly measured CR
spectra (the so-called ``EGRET GeV excess''). The excess emission was observed
in all directions on the sky, and a variety of explanations have been proposed,
including beyond-the-Standard-Model scenarios like annihilating or decaying
dark matter. The Large Area Telescope (LAT) instrument on the Fermi Gamma-ray
Space Telescope has measured the diffuse gamma-ray emission with improved
sensitivity and resolution compared to EGRET. We report on LAT measurements of
the diffuse gamma-ray emission for energies 100 MeV to 10 GeV and Galactic
latitudes 10 deg. <= |b| <= 20 deg. The LAT spectrum for this region of the sky
is well reproduced by a diffuse Galactic gamma-ray emission model that is
consistent with local CR spectra and inconsistent with the EGRET GeV excess.Comment: 2 figures, 1 table, accepted by Physical Review Letters, available
online Dec. 18th, 200
The Spectral Energy Distribution of Fermi bright blazars
(Abridged) We have conducted a detailed investigation of the broad-band
spectral properties of the \gamma-ray selected blazars of the Fermi LAT Bright
AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray
spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray
data, collected within three months of the LBAS data taking period, we were
able to assemble high-quality and quasi-simultaneous Spectral Energy
Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is
similar to that of blazars discovered at other wavelengths, clearly showing, in
the usual Log - Log F representation, the typical broad-band
spectral signatures normally attributed to a combination of low-energy
synchrotron radiation followed by inverse Compton emission of one or more
components. We have used these SEDs to characterize the peak intensity of both
the low and the high-energy components. The results have been used to derive
empirical relationships that estimate the position of the two peaks from the
broad-band colors (i.e. the radio to optical and optical to X-ray spectral
slopes) and from the gamma-ray spectral index. Our data show that the
synchrotron peak frequency is positioned between 10 and
10 Hz in broad-lined FSRQs and between and Hz in
featureless BL Lacertae objects.We find that the gamma-ray spectral slope is
strongly correlated with the synchrotron peak energy and with the X-ray
spectral index, as expected at first order in synchrotron - inverse Compton
scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton
(SSC) models cannot explain most of our SEDs, especially in the case of FSRQs
and low energy peaked (LBL) BL Lacs. (...)Comment: 85 pages, 38 figures, submitted to Ap
Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009
We present the light curves and spectral data of two exceptionally luminous
gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on
board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During
these flares, having a duration of a few days, the source reached its highest
gamma-ray flux ever measured. This allowed us to study in some details their
spectral and temporal structures. The rise and decay are asymmetric on
timescales of 6 hours, and the spectral index was significantly harder during
the flares than during the preceding 11 months. We also found that short, very
intense flares put out the same time-integrated energy as long, less intense
flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G.
Tosti, [email protected]. 15 pages, 4 figures, published in The
Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
PKS 1502+106: a new and distant gamma-ray blazar in outburst discovered by the Fermi Large Area Telescope
The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope
discovered a rapid (about 5 days duration), high-energy (E >100 MeV) gamma-ray
outburst from a source identified with the blazar PKS 1502+106 (OR 103, S3
1502+10, z=1.839) starting on August 05, 2008 and followed by bright and
variable flux over the next few months. Results on the gamma-ray localization
and identification, as well as spectral and temporal behavior during the first
months of the Fermi all-sky survey are reported here in conjunction with a
multi-waveband characterization as a result of one of the first Fermi
multi-frequency campaigns. The campaign included a Swift ToO (followed up by
16-day observations on August 07-22, MJD 54685-54700), VLBA (within the MOJAVE
program), Owens Valley (OVRO) 40m, Effelsberg-100m, Metsahovi-14m, RATAN-600
and Kanata-Hiroshima radio/optical observations. Results from the analysis of
archival observations by INTEGRAL, XMM-Newton and Spitzer space telescopes are
reported for a more complete picture of this new gamma-ray blazar.Comment: 17 pages, 11 figures, accepted for The Astrophysical Journa
- …