471 research outputs found

    Do Wilson Fermions Induce an Adjoint Gauge Coupling?

    Full text link
    Expansions of the Wilson determinant in lattice QCD with quarks produce gauge action terms which shift the coupling constant of the fundamental representation plaquette action and induce an adjoint representation plaquette action. We study the magnitude of these induced couplings with two flavors of Wilson fermions. We utilize a microcanonical demon method, which allows us to measure the induced couplings directly from gauge configurations generated by full fermionic simulations.Comment: 3 pages postscript, proceedings for LATTICE '9

    Numerical Study of Wave Propagation in Uniaxially Anisotropic Lorentzian Backward Wave Slabs

    Full text link
    The propagation and refraction of a cylindrical wave created by a line current through a slab of backward wave medium, also called left-handed medium, is numerically studied with FDTD. The slab is assumed to be uniaxially anisotropic. Several sets of constitutive parameters are considered and comparisons with theoretical results are made. Electric field distributions are studied inside and behind the slab. It is found that the shape of the wavefronts and the regions of real and complex wave vectors are in agreement with theoretical results.Comment: 6 pages, figure

    Genetic basis of trichome production in Arabidopsis lyrata

    Get PDF

    High Temperature 3D QCD: Dimensional Reduction at Work

    Full text link
    We investigate the three-dimensional SU(3) gauge theory at finite temperature in the framework of dimensional reduction. The large scale properties of this theory are expected to be conceptually more complicated than in four dimensions. The dimensionally reduced action is computed in closed analytical form. The resulting effective two-dimensional theory is studied numerically both in the electric and magnetic sector. We find that dimensional reduction works excellently down to temperatures of 1.5 times the deconfinement phase transition temperature and even on rather short length scales. We obtain strong evidence that for QCD3{\rm QCD}_3, even at high temperature the colour averaged potential is represented by the exchange of a single state, at variance with the usual Debye screening picture involving a pair of electric gluons.Comment: 27 page

    Low Space External Memory Construction of the Succinct Permuted Longest Common Prefix Array

    Full text link
    The longest common prefix (LCP) array is a versatile auxiliary data structure in indexed string matching. It can be used to speed up searching using the suffix array (SA) and provides an implicit representation of the topology of an underlying suffix tree. The LCP array of a string of length nn can be represented as an array of length nn words, or, in the presence of the SA, as a bit vector of 2n2n bits plus asymptotically negligible support data structures. External memory construction algorithms for the LCP array have been proposed, but those proposed so far have a space requirement of O(n)O(n) words (i.e. O(nlogn)O(n \log n) bits) in external memory. This space requirement is in some practical cases prohibitively expensive. We present an external memory algorithm for constructing the 2n2n bit version of the LCP array which uses O(nlogσ)O(n \log \sigma) bits of additional space in external memory when given a (compressed) BWT with alphabet size σ\sigma and a sampled inverse suffix array at sampling rate O(logn)O(\log n). This is often a significant space gain in practice where σ\sigma is usually much smaller than nn or even constant. We also consider the case of computing succinct LCP arrays for circular strings

    3d physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis

    Get PDF
    We discuss a framework relying on both perturbative and non-perturbative lattice computations which will be able to reliably determine the parameters of the EW phase transition. A motivation for the use of 3d effective theory in the lattice simulations, rather than the complete 4d one, is provided. We introduce and compute on the 2-loop level a number of gauge-invariant order parameters -- condensates, which can be measured with high accuracy in MC simulations. The relation between MSbar and lattice condensates is found, together with the relation between lattice couplings and continuum parameters (the constant physics curves). These relations are exact in the continuum limit.Comment: 50 pages, uuencoded compressed postscript fil

    Natural neutrino sector in a 331-model with Froggatt-Nielsen mechanism

    Get PDF
    The extensions of the Standard Model based on the SU(3)c × SU(3)L × U(1)X gauge group (331-models) have been advocated to explain the number of fermion families in nature. It has been recently shown that the Froggatt-Nielsen mechanism, a popular way to explain the mass hierarchy of the charged fermions, can be incorporated into the 331-setting in an economical fashion (FN331). In this work we extend the FN331-model to include three right-handed neutrino singlets. We show that the seesaw mechanism is realized in this model. The scale of the seesaw mechanism is near the SU(3)L × U(1)X-breaking scale. The model we present here simultaneously explains the mass hierarchy of all the fermions, including neutrinos, and the number of families. © 2020, The Author(s).Peer reviewe

    Density Functional Theory of Multicomponent Quantum Dots

    Full text link
    Quantum dots with conduction electrons or holes originating from several bands are considered. We assume the particles are confined in a harmonic potential and assume the electrons (or holes) belonging to different bands to be different types of fermions with isotropic effective masses. The density functional method with the local density approximation is used. The increased number of internal (Kohn-Sham) states leads to a generalisation of Hund's first rule at high densities. At low densitites the formation of Wigner molecules is favored by the increased internal freedom.Comment: 11 pages, 5 figure
    corecore