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Abstract

We discuss a framework relying on both perturbative and non-perturbative lattice
computations which will be able to reliably determine the parameters of the EW phase
transition. A motivation for the use of 3d e�ective theory in the lattice simulations,

rather than the complete 4d one, is provided. We introduce and compute on the
2-loop level a number of gauge-invariant order parameters { condensates, which can

be measured with high accuracy in MC simulations. The relation between MS and

lattice condensates is found, together with the relation between lattice couplings and

continuum parameters (the constant physics curves). These relations are exact in the

continuum limit.
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1 Introduction

The infrared problem in the thermodynamics of Yang-Mills �elds prevents a purely

perturbative study of the electroweak phase transition. It is well known that the

e�ective potential for the scalar �eld cannot be computed perturbatively for small

�, in the symmetric phase. Accordingly, all the quantities characterizing the phase

transition region, Tc, metastability and tunnelling temperatures, �c, latent heat and

interface tension are not computable in perturbation theory. At the same time, some

properties of the high energy particle excitations in broken and unbroken phases allow

perturbative treatment. Moreover, the broken phase of the electroweak theory is weakly

coupled, provided the vacuum expectation value of the Higgs �eld is large enough. Thus

it is essential to apply both perturbative and non-perturbative methods to determine

the nature of the electroweak (EW) phase transition.

These general remarks suggest that probably the best way to determine the param-

eters of the electroweak phase transition relevant for cosmology with su�cient accu-
racy should consist in two steps, separating the perturbative and the non-perturbative

physics. At the �rst step one goes as far as possible with analytical perturbative calcu-
lations, which can simplify greatly the underlying 4d EW theory. The second consists in
numerical lattice Monte Carlo simulations of non-perturbative physics. This program
was initiated in ref. [1] and consists in the following ingredients:
(i) Dimensional reduction of 4d high temperature theory. This step provides an

e�ective 3d theory containing one (or even two) essential mass scales less than the
underlying 4d theory. The scales of the 4d theory are the temperature T , the Debye
screening mass mD � gT , and the infrared scale g23 = g2T , while those of the reduced
theory are mD and g23 (or just g

2
3 if A0 { the temporal component of the gauge �eld { is

integrated out). This part of the analysis has been carried out in [2] on the 2-loop level;
the 2-loop contribution is essential both for numerical and conceptual reasons. The 3d

theory is an excellent approximation to the 4d world for realistic Higgs masses. At the
same time, this theory is much easier to analyze with perturbative or non-perturbative
methods. The main reason is its super-renormalizable character. In contrast to the 4d
theory, where ultraviolet divergences exist in any order of perturbation theory, in 3d
only 1- and 2-loop graphs are divergent. This makes the scaling behaviour, essential for

relating lattice and continuum parameters, much simpler than that in 4d, and allows

one to make computations with high accuracy.
(ii) A relation between lattice couplings and couplings of the 3d theory, which is exact
in the continuum limit. With this relation, and using (i), one can relate any of the

lattice observables to physical ones for given Higgs and W masses. The existence of an

exact relation is a consequence of the super-renormalizable character of the 3d gauge-
Higgs system, where 3-loop or higher order terms do not contribute to renormalization.

(iii) The study of di�erent observables on the lattice in the broken phase (below the
critical temperature) and a comparison of them with 2-loop perturbative predictions
5. This allows one to estimate higher (3-loop, etc.) order perturbative corrections to-

5As we have shown in [2] the 2-loop level of perturbative computation is a minimal one for which

the result is practically scale-independent.
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gether with an estimate of �nite a (lattice spacing) e�ects. This part of the framework

is quite important, since it can provide a justi�cation for the use of perturbative meth-

ods in the broken phase for concrete values of the Higgs mass and the temperature.

If perturbation theory works with su�cient accuracy, then in some sense at least one

half of the problems associated with the electroweak phase transition { the properties

of the broken phase at Tc { can be dealt with analytical methods.

(iv) The study of di�erent observables in the symmetric phase (above Tc). Here the

most interesting characteristics are correlation lengths of operators with di�erent quan-

tum numbers, in particular those that would be associated with Higgs and W bosons

in the broken phase. The results of this study cannot be reproduced by perturbative

methods, since the symmetric phase is in the strongly coupled con�ning phase. This

part of the study is important since most of the mechanisms for electroweak baryoge-

nesis are linked in one way or another with the properties of the symmetric phase.

(v) As a combination of (iii) and (iv), the study of the system in the transition region

and the determination of the parameters of the phase transition (such as its order, the
critical temperature, the jump of the order parameter, etc.).
This paper sets up points (ii) and partially (iii) of the above proposal, and adds

several remarks to (i). These steps are necessary for the detailed study of the EW phase
transition itself [3]. Some qualitative results on the EW phase transition has appeared
in [1] (mostly for the light Higgs boson, mH = 35 GeV) and in [4] for mH = 80 GeV.
The paper is organized as follows. In section 2 we provide further motivation of step

(i), i.e. the use of a 3d e�ective theory [2, 4],[5] rather than the full 4d one [6]{[10]. In

section 3 we summarize the results from the 2-loop perturbative analysis [2]. In sections
4 and 5 we introduce a set of gauge-invariant observables (condensates), which can be
computed with a simple manipulation from the 2-loop e�ective potential and can be
measured on a lattice with high precision. A discussion of the renormalization of the
ground-state energy "vac in the MS scheme is given in section 4. As a new perturbative

result, section 5 contains a 2-loop perturbative computation of "vac and h�y�i in the
MS scheme.
The lattice action is given in Section 6, as well as a detailed discussion of relating

lattice numbers to physical quantities, i.e. de�ning the constant physics curve. It is
shown that the relation of the lattice to continuum requires the computation of three

numbers, �; �� and ~�. Two of these are computed in 2-loop lattice perturbation theory6.

The third one, �, is related to the pure gauge sector, in which lattice perturbation theory

is very complicated. We determine it in Section 7 by measuring h�y�i on the lattice
deep in the broken phase and by comparing this with the 2-loop perturbative result.

This comparison involves the constant physics curve and permits one to calibrate �.

The constant physics curves we found do not have any higher loop contributions7.

Simultaneously, we use Monte Carlo data to estimate higher order corrections to the

6In analogy to the derivation of the relation between �QCD in lattice and continuum regularization

schemes [11, 12] in QCD, the calculation amounts to computing the constant term besides the leading

logarithmic term. However, now the logarithmic term arises only at the 2-loop level, which accounts

for the greater complexity of the problem.
7In [1] the corresponding relation was obtained at the 1-loop level.
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e�ective potential and the magnitude of �nite- a e�ects. In Section 8 we construct the

constant physics curves for a theory in which the A0 �eld { the former time component

of the gauge �eld { is integrated out. Section 9 is a conclusion. Several technical

points are covered in Appendices. In particular, we derive the 2-loop form of the

gauge-invariant e�ective potential introduced in [13].

In this paper we frequently use the results of ref. [2]. All references to speci�c

formulae from that paper are indicated by a I followed by the equation number.

2 3d versus 4d

In the following subsection we discuss the basic properties of dimensional reduction.

We also introduce a criterion for a dimensional reduction di�erent from that previously

discussed in the literature and discuss the role of fermions. In the second subsection we

discuss the quantitative advantages of the 3d formulation in the study of the electroweak
phase transition.

2.1 Why the 3d description is possible

The idea of dimensional reduction [14]{[19] comes from a statement that equilibrium
�nite temperature �eld theory is equivalent to a Euclidean zero temperature �eld the-
ory de�ned on a �nite imaginary time interval 1=T supplied with periodic boundary
conditions for bosons and antiperiodic for fermions. Therefore, 4d �nite temperature
�eld theory is exactly equivalent to a 3d �eld theory at T = 0, but with an in�nite

number of �elds. The 3d masses of bosons are mB = 2�nT and those of fermions
mF = �T (2n+ 1); n = 0; 1; :::.
The 3d e�ective bosonic action is de�ned as

exp(�Se�) =
Z
D[heavy modes] exp(�S); (1)

where the functional integral is taken over all modes with masses � T . The e�ective
action is a complicated functional of 3d bosonic �elds. The use of it is, of course,
equivalent to the full 4d theory.

Suppose now that we are dealing with infrared physics only, so that the typical

energy scale (which we denote as Q and discuss in more detail later) of the problem
is much smaller than the temperature. Then all 3d fermionic modes and all bosonic

modes besides the one corresponding to n = 0 have masses larger than �T and are
very heavy in comparison with our scale. So, the integration over the heavy modes can

be done perturbatively with an expansion parameter Q=(�T ). The e�ective 3d action

can be represented in the form

Se� = cV T 3 +
Z
d3xLe�(T ) +

X
n

On

T n
; (2)

where Le�(T ) is a renormalizable 3d e�ective bosonic Lagrangian with temperature-

dependent constants, On are operators of dimensionality n, suppressed by powers of
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temperature, c is a number related to the number of degrees of freedom of the theory

and V is the volume of the system. For example, the 3d gauge coupling is g23 = g2T .

The last step of dimensional reduction amounts to neglecting the terms On. Note that

the constant part of the action is irrelevant for a discussion of phase transitions.

Formally, the operators On are suppressed by the powers of temperature. It seems,

therefore, that their contribution is negligible in the limit T ! 1. This is, however,

wrong since the 3d coupling and mass also grow without bounds in this limit. Thus

On / T n, and the extra contributions to the 3d action do not vanish when T ! 1.

Thus, the Landsman [17] criterion of exact dimensional reduction

lim
T!1

(V4d � TV3d)=T
4 ! 0; (3)

where V4d is the e�ective potential computed in 4d and V3d is the potential computed

with a renormalizable part of 3d action (with temperature-dependent parameters), does

not hold. Instead, one has

(V4d � TV3d)=T
4 = O(m2

i (T )=T
2); (4)

where themi(T ) are the relevant mass scales (inverse screening and correlation lengths)
of the system. The question of validity of dimensional reduction thus becomes a prag-
matic one: when is the r.h.s. of (4) negligible? At very high T all masses are propor-
tional to coupling constants times T and the r.h.s. of (4) is some power of 4d coupling
constants. These extra terms are small only when the dimensionless coupling constants

(run to the scale of about 7T , see below) of the underlying 4d theory are small. So,
the criterion for dimensional reduction to work is thus the same as that for T = 0
perturbation theory: g2 � 1 and � � 1, � being a scalar self-coupling constant. For
the electroweak theory (minimal standard model) this implies that mH should not be
very large, say, mH<�3mW .

However, we are mainly interested not in very large T but in T close to a possible
phase transition temperature. Then the system contains two phases and may contain
other mass scales than those set by the product of T and coupling constants. We will
see below that the dimensional reduction is valid for the electroweak theory near Tc,
provided that the Higgs mass is su�ciently large, say, mH>�30 GeV.
One may wonder if we achieved anything going from 4d to 3d: dimensional reduction

requires small coupling constants and works only when 4d perturbation theory works.

The answer is: Yes, we do. The region of applicability of perturbation theory is di�erent
at zero and at high temperatures. The criterion for �nite T perturbation theory to

work is
g23=Q� 1 (5)

(for example, in the calculation of the e�ective potential the condition is g23=(�mT )� 1,

in hot QCD perturbation theory breaks down for distances 1=Q > 1=(g2T ), etc.), while

the criterion for T = 0 perturbation theory to work, which is the same as the criterion
of dimensional reduction to be valid, is g2 � 1. In other words, at high temperatures,

we can �nd ourselves in a situation in which 4d �nite T perturbation theory does not
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work (g23=Q = g2T=Q � 1), but dimensional reduction is possible (g2 � 1). As we

shall see, this is a typical situation in electroweak theory. After the reduction is done

analytically, we can do some analytic perturbative or, most importantly, numerical

non-perturbative analysis of the 3d theory. This may be easier and more precise than

the analysis of the 4d one.

Now, we can assert a di�erent formal criterion for the validity of dimensional reduc-

tion: take the limit T ! 1, with 3d parameters �xed. Then the di�erence between

4d and 3d computations always vanishes. This is not a physical limit since it implies a

transition between di�erent physical theories at zero temperature (g2 = g23=T ! 0). It

is, however, quite helpful from a practical point of view, since it provides a de�nition

of the formal expansion parameter, Q=T with Q � g23, which must be small for the di-

mensional reduction be be valid. The important point is that in this limit the resulting

3d theory has a non-trivial dynamics, which can be completely non-perturbative.

A �nal comment concerns QCD at �nite temperatures: one should not expect di-

mensional reduction to be valid in the vicinity of the QCD phase transition, where
the 4d gauge coupling is not small. However, at large enough temperatures, it may be
used.

2.2 Why a 3d description is more e�cient

In the previous subsection we argued that 3d e�ective theories can be used for the
non-perturbative study of high temperature phase transitions in weakly coupled �eld

theories. In this subsection we will discuss the qualitative and quantitative advantages
of the 3d formulation.
We start from the qualitative features. An important aspect of dimensional reduction

concerns the role of fermions. Since the fermion masses (2n + 1)�T and bosonic non-
static mode masses 2�nT both get large simultaneously, both will give a contribution

of the same order. Thus either both can be integrated out in the vicinity of Tc, i.e.
the 4d!3d reduction is valid, or both have to be included and the 3d e�ective theory
is not accurate8. Moreover, a realistic electroweak theory contains chiral fermions,
which are impossible at present to put on the lattice. So, they must be integrated out
analytically. In other words, 4d bosonic theory, which one can study on the lattice, is

in any case an e�ective theory and not better than a dimensionally reduced 3d one.

The second advantage is that complete 4d perturbative computations of the �nite
T e�ective potential are known only in the 1-loop approximation. The existing 2-
loop computations [20]{[22] deal with high-temperature asymptotics only, which is

equivalent to a 3d computation [2]. So, one is forced to compare the results of 4d

lattice simulations with e�ectively 3d perturbative computations. Why then not carry

out 3d simulations?

The last, but not the least, advantage is the great simpli�cation of perturbative

8The former is the case for the electroweak theory for an interesting range of mH . The latter

holds for QCD, for which the gauge coupling is large at Tc. In fact, it is well known that the QCD

transition depends sensitively on the fermion content and that, for pure SU(3) gauge theory, the 3d

approximation starts to work somewhat above Tc, for T>�1:5Tc.
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computations in the 3d e�ective theory, in comparison with resummed perturbation

theory in 4d. This allowed one to clarify the nature of the large 2-loop logarithmic

corrections in the MS scheme and to introduce a method of summation of those based

on the renormalization group [2].

We now turn to more quantitative aspects of the use of 3d e�ective theory.

2.2.1 The quality of dimensional reduction in continuum

We demonstrate our point by a study of di�erent approximations to the quantity

related to the 1-loop free energy of free bosons at high temperatures, entering the 1-

loop evaluation of the e�ective potential and the computation of the e�ective scalar

mass at high temperatures:

I(m;T ) = T
1X

n=�1

Z
d3k

(2�)3
1

k2 +m2
; (6)

where k2 = k2 + (2�nT )2.
The high temperature expansion of (6) in continuum theory in the MS scheme reads:

I(m;T ) =
T 2

12
� mT

4�
� m2

8�2
log(

�T

T
) +

�(3)

128�4
m4

T 2
+O(m

6

T 4
); (7)

where �T = 4�Te� � 7T . The procedure of dimensional reduction takes into account
the �rst three terms here. Namely, the �rst term changes the zero-temperature mass
to the e�ective high-temperature mass, the third term �xes the scale at which the 4d
coupling constants should be normalized, and the second term is purely 3-dimensional
(it comes from the n = 0 term in the sum). The O(m4) term and the higher-order

terms are omitted in the e�ective 3d theory. They represent the contribution of higher
dimensional operators to the e�ective action.
By comparison of the second and the fourth terms in the expansion we see that the

3d description is accurate within, say, a 1% level, provided that

�(3)

32�3
m3

T 3
< 0:01; (8)

i.e. m=T < 2:0. This condition is satis�ed for all particles in the broken phase in
the vicinity of the electroweak phase transition, if the Higgs mass is not very small,

mH > 30 GeV. In fact, m=T is smaller than 0:5 for any realistic Higgs mass mH > 60

GeV. This gives an accuracy better than 0:1%. In other words, the 3d description
is a very good approximation to the real 4d high- temperature case, at least from

the point of view of one-loop computations. The excellent convergence of the high
temperature expansion has been mentioned in many papers on this subject (see, for

example [23]{[25]).
Of course, the small coe�cients in front of higher powers of (m=T ), found in one-

loop approximation, do not necessarily reappear in 2 or higher loops. The accuracy of

the dimensional reduction on the 2-loop level certainly deserves a careful investigation,
which can be done on a basis of 2-loop computations in refs. [20, 21, 2, 22].
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2.2.2 Finite lattice spacing e�ects

Next we wish to argue that the 4d lattice simulations of the electroweak phase transition

can provide the same accuracy in the description of the EW phase transition as 3d

simulations, only at the cost of a considerable increase of lattice volume.

We start from a simple heuristic estimate. Let us take for simplicity a 4d lattice with

equal lattice spacing a in temporal and spatial directions. The typical momentumof the

particle in the plasma is about 3T , and to have an adequate description of that on the

lattice we must have a� 1=(3T ). In contrast, in 3d simulations the only requirement

is that the lattice spacing should be much smaller than a typical correlation length,

a� 1=m, with m being a particle mass. For example, for the theory with Higgs mass

mH = 80 GeV the ratio of W mass (de�ned as gv(T )=2 and measured on the lattice)

to the temperature at the transition point is of the order of m=T � 0:2, so that the 3d

requirement is about 3=0:2 = 15 times weaker than that for 4d simulations. Hence, in

order to have the same �nite a and �nite volume e�ects, one should use 153 � 3 � 103
larger lattices for 4d simulations.
This rough estimate can, in fact, be con�rmed by an analytic study of �nite a e�ects

in the quantity I(m;T ). For simplicity we take a spatially in�nite lattice. Then, in a
dimensionally reduced theory we have

Idimred(m;T ) =
T 2

12
+ TI � m2

8�2
log(

�T

T
): (9)

The function I, being a 3d tadpole graph, has the following expansion (see Appendix
A):

I =
1

4�a
[�� (am)� �(am)2 +O(am)3]; (10)

with � = 3:17591 and � = 0:15281 9. Apart from counterterms, (9) di�ers from the
continuum expression by two terms. First, it does not contain the O(m4=T 2) term,
dropped by the dimensional reduction procedure. As we argued above, this term is

negligibly small for the realistic case of electroweak theory. Second, it contains terms
proportional to a, which vanish in the continuum limit. We denote the magnitude of
the �nite a correction by p. To have, say, p = 10% (3%), �nite a corrections to the 3d
contribution to I3, the lattice should obey the condition 1=(am) > �=p ' 1:5(5), which

is quite easy to realize in practice.

The 4d lattice approximation to (6) on an asymmetric lattice, which has a �nite

number of steps Nt = (aT )�1 in the temporal direction, is

I(m;T;Nt) = T
Nt�1X
n=0

Z �=a

��=a

d3k

(2�)3
1

m2 + ( 2
a
)2
P
sin2(kia

2
) + ( 2

a
)2 sin2(�n

Nt
)
: (11)

The large Nt (small a) expansion of this quantity reads:

I4dlatt(m;T;Nt) =
1

4�

�
1:94695

a2

�
+
T 2

12
[1 + f1(Nt)]

9Contrary to the 4d case, where �nite a corrections scale like a2, scaling violations start from linear

in a terms in 3d.
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+ T (I3 �
�

4�a
+
�am2

4�
) (12)

�m2

8�2
[log(Nt)� 0:057 + f2(Nt)] +

�(3)

128�4
m4

T 2
[1 + f3(Nt)] +O(m6);

where the functions f1(Nt); f2(Nt) and f3(Nt) vanish in the continuum limit Nt !1
as O(1=N2

t ) and can be computed numerically (see Table 1).

Nt 2 3 4 5 6 7 8 9 10

f1 0.200 0.108 0.056 0.032 0.021 0.015 0.011 0.009 0.007

f2 0.336 0.144 0.076 0.047 0.031 0.023 0.018 0.014 0.009

Table 1: The values of functions f1 and f2 for di�erent numbers of sites Nt in the

temporal direction.

Let us �rst take for simplicity a lattice minimal subtraction scheme in which only
the terms singular in a are removed by counterterms. The formal advantage of 4d is
that the scaling violation is proportional to a2 � 1

N2

t

, and not to a, as in 3d. So, the

functions f1 and f2 decrease quite rapidly with increase of Nt. However, the numerical
smallness of the coe�cient � (reecting the qualitative discussion of the di�erent scales
above), together with the smallness of the ratio m=T near the phase transition, makes
the 3d case more advantageous than the 4d one. Indeed, to have the same level p

approximation to 4d physics, one should have at least

f1(Nt) <
12

4�
p
m

T
: (13)

For example, for p = 10% we have Nt > 5, and for p = 3% Nt > 8. Of course, this
is not too di�cult to achieve with computers available at present. However, at the

same time, this requirement puts a rather strong limitation on the size of the lattice
in the spatial direction. Indeed, for, say, p = 10% (3%) and m=T ' 0:3 we have for
the correlation lengths 1=(am) ' 16(55). In other words, to achieve in 4d the same
accuracy of description of the EW phase transition as a 3d dimensionally reduced
theory can provide, one should use about 103 larger 3d volumes. In total, counting the

number of sites in the 4th direction, the use of 3d theory provides a 3 to 4 orders of
magnitude gain in computer time10.

The way out of this argument is the use of the temperature-dependent subtraction

scheme, removing the �nite contributions to I4dlatt(m;T;Nt), proportional to f1 and f2.
This requires a careful study of the �nite a behaviour of observables in 4d simulations

at zero and non-zero temperatures11. It is, however, highly non-trivial (but in principle
possible [9]), since 4d theory contains at least three di�erent mass scales (temperature,

Debye screening mass, and 3d coupling g2T ).

10If the computer time is not a problem, then the 4d simulations with, say, Nt = 8, may be

superior to 3d simulations, provided the 2- and higher-loop dimensional reduction corrections come

with coe�cients so large that these corrections are larger that 4d �nite a e�ects.
11We are grateful to I. Montvay for a discussion on this point.

8



3 Survey of continuum results

It this section we summarize the continuum formulae relating 3d and 4d theories, and

present a number of 2-loop relations in 3d. The starting point is the 4d Lagrangian of

SU(2) + fundamental doublet Higgs theory

L =
1

4
F a
��F

a
�� + (D��)

y(D��)�
1

2
m2�y�+ �(�y�)2: (14)

We have thus omitted from the full standard model the U(1) subgroup as well as

fermions, which { with some reservation for the top quark { are inessential for the

thermal phenomena studied. In fact, fermions can be trivially included in the scheme

of dimensional reduction. Their e�ect is to modify expressions relating 3d parameters

with 4d ones, but they do not in any way change the qualitative nature of the e�ective

3d theory.

The leading principle of our analysis is the replacement of the full 4d theory (14) by an
e�ective 3d theory, obtained by integrating over the non-static modes perturbatively.
As we discussed in the previous section, this is a very good approximation to the
problem under consideration.

Integrating over the non-static modes to 1-loop accuracy in the MS scheme the
following e�ective action is obtained:

Se�[A
a
i (x); A

a
0(x); �i(x)] =

Z
d3x

�
1

4
F a
ijF

a
ij +

1

2
(DiA0)

a(DiA0)
a + (Di�)

y(Di�) +

+
1

2
m2
DA

a
0A

a
0 +

1

4
�A(A

a
0A

a
0)

2 +m2
3�
y�+ �3(�

y�)2 + h3A
a
0A

a
0�

y�

�
: (15)

The key property of the theory (15) is that all the couplings �A; �3; h3 and g23 are
3d renormalization group invariants (there is no ultraviolet renormalization of them).
These couplings are given in terms of the 4d couplings by

g23 = g2(�T )T; (16)

�3 = T

�
�(�T ) +

1

16�2
3

8
g4(�T )

�
; (17)

h3 =
1

4
g23

�
1 +

1

16�2

�
12�(�T ) +

49

6
g2(�T )�

1

3
g2(�T )

��
; (18)

�A =
17g4(�T )T

48�2
; (19)

where the 4d couplings are run to the scale �T by the standard � functions.

On the contrary, the 3d mass operators for the Higgs and A0 �elds contain linear and
logarithmic divergences. To renormalize the theory, one adds to eq.(15) the counterterm

action

�S = �
Z
d3x

�
�m2�y�+

1

2
�m2

DA
a
0A

a
0

�
; (20)

where

�m2 = f1m�lin + f2m�log; �m2
D = f1D�lin + f2D�log: (21)
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Here

f1m =
9

4
g23 + 6�3; f1D = 5(g23 + �A); (22)

and

f2m =
81

16
g43 + 9�3g

2
3 � 12�23; f2D = 5�2A � 20g23�A (23)

are exact expressions with no higher-order corrections and �lin and �log are counter-

terms depending on the regularization scheme used. The linearly divergent counterterm

�lin vanishes in dimensional regularization; on the lattice it behaves like �lin = �=4�a

(� = 3:1759114, a is the lattice spacing). The quantity �log is related to the log-

arithmically divergent 2-loop sunset diagram (eq.(22) of [2]). In the MS scheme it

is

�log =
1

64�2�
(24)

and on the lattice

�log / � 1

16�2
log(aT ): (25)

In the MS scheme the masses are scale-dependent:

�3
@m2

3(�3)

@�3
= � 1

16�2
f2m; �3

@m2
D(�3)

@�3
= � 1

16�2
f2D; (26)

which can be integrated to give

m2
3(�3) =

1

16�2
f2m log

�m

�3
; m2

D(�3) =
1

16�2
f2D log

�D

�3
; (27)

where �m and �D are integration constants. The constant �m can be obtained by
comparing the 4d and 3d calculations:

m2
3(�3) =

�
3

16
g2(�T ) +

1

2
�(�T ) +

g2

16�2

�
167

96
g2 +

3

4
�

��
T 2�

� 1

2
m2(�T ) +

1

16�2

�
f2m

�
log

3T

�3
+ c

��
= (28)

�
3

16
g23T +

1

2
�3T +

g23
16�2

�
149

96
g23 +

3

4
�3

��
� 1

2
m2
H +

1

16�2

�
f2m

�
log

3T

�3
+ c

��
;

where m2
H � m2(�T ) and [26]

c = [log(8�=9)� 2E + � 0(2)=�(2)]=2 = �0:348725: (29)

For mD one can similarly write

m2
D(�3) =

5

6
g2(�T )T

2 +
1

16�2
f2D log(

3T

�3
) +

1

16�2
(c1g

4
3 + c2g

2
3�3); (30)

but the constants c1; c2 and, hence, �D have so far not been computed.
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In practice, one can write

g(�T ) =
2

3
; �3 =

g23m
2
H

8m2
W

; mW = 80:6GeV h3 =
1

4
g23: (31)

The explicit form of the total 2-loop e�ective potential is needed frequently in what

follows. The tree and 1-loop parts are

V0(�) =
1

2
m2

3(�3)�
2 +

1

4
�3�

4; (32)

V1(�) = � 1

12�
(6m3

T + 3m3
L +m3

1 + 3m3
2) (33)

and the 2-loop part is (eq.(33) of [2])

V2(�; �3) =
1

16�2

�

�3g43
16

�2
�
2 �H(m1;mT ;mT )�

1

2
�H(m1;mT ; 0) + �H(m1;mL;mL)

+
m2

1

m2
T

[ �H(m1;mT ; 0)� �H(m1;mT ;mT )]

+
m4

1

4m4
T

[ �H(m1; 0; 0) + �H(m1;mT ;mT )� 2 �H(m1;mT ; 0)]

� m1

2mT

� m2
1

4m2
T

�
� 3�23�

2[ �H(m1;m1;m1) + �H(m1;m2;m2)]

+2g23m
2
T

�
63

16
�H(mT ;mT ;mT ) +

3

16
�H(mT ; 0; 0) � 41

16

�

�3

2
g23[(m

2
T � 4m2

L)
�H(mL;mL;mT )� 2mTmL �m2

L]

+4g23m
2
T +

3

8
g23(2mT +mL)(m1 + 3m2)

+
15

4
�Am

2
L +

3

4
�3(m

2
1 + 2m1m2 + 5m2

2)

�3

8
g23[(m

2
T � 2m2

1 � 2m2
2)
�H(m1;m2;mT ) + (m2

T � 4m2
2)
�H(m2;m2;mT )

+
(m2

1 �m2
2)

2

m2
T

[ �H(m1;m2;mT )� �H(m1;m2; 0)]

+(m2
1 �m2

2)(m1 �m2)=mT +mT (m1 + 3m2)�m1m2 �m2
2]

�
: (34)

Here the masses are

mT =
1

2
g3�; m2

L = m2
D +

1

4
g23�

2;

m2
1 = m2

3(�3) + 3�3�
2; m2

2 = m2
3(�3) + �3�

2: (35)
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and the �nite part of the sunset function is

�H(m1;m2;m3) = log
�3

m1 +m2 +m3

+
1

2
: (36)

The coe�cient of 1
2
log(�3)�

2, coming entirely from the H-terms, gives the value of

f2m=16�
2.

This potential has been calculated in the Landau gauge. In a general covariant

gauge the potential has been computed in [27, 28]. The 4d computation of the high

temperature asymptotics of the potential [20]{[22] leads to the same result as the 3d

one [2].

The 3d scale �3 appearing in (28) and in (34) is arbitrary. We refer here to [2] for a

discussion of the renormalization group improved e�ective potential, which allows one

to �x this scale in a natural way.

4 Gauge-invariant order parameters { condensates

As was argued in ref. [2] a reliable perturbative computation of any physical observable
in 3d theory should be done at least on the 2-loop level. The reason for this is the fact
that the logarithmic renormalization of masses in 3d starts at the 2-loop level. The
only quantity known at present for a 3d gauge-Higgs system on 2-loop approximation is

the e�ective potential in Landau gauge [2] or in arbitrary gauge [27, 28]. The e�ective
potential, is, however, a gauge-dependent quantity, and cannot be immediately used
for the extraction of gauge-invariant information. In this section, we show how simple
manipulations with the e�ective potential can generate a set of gauge-invariant order
parameters { condensates. Those condensates can be computed with 2-loop accuracy

with little extra work and can be easily measured on the lattice.
By condensates, in general, we mean vacuum averages of any local composite gauge

invariant operators,

hOi =
R D e�S( )O( )R D e�S( ) : (37)

Examples are provided by the scalar condensate h�y�i, the \gluon" condensate hF a
ijF

a
iji,

etc. These composite operators contain the product of �elds at the same point. There-
fore, their expectation values are divergent (in�nities cannot be removed by countert-

erms renormalizing the masses, couplings and �elds of the underlying theory). So, their
value is prescription dependent and cannot be �xed unambiguously.

We would like to provide a natural prescription for a number of condensates related
to the ground state energy. We de�ne its renormalization prescription in the next

subsection.

4.1 Renormalization of vacuum energy

The renormalization of our 3d theory requires the introduction of 2-loop mass countert-
erms for m2

3 and m
2
D. After that, the computation of any physical amplitude does not

12



contain ultraviolet divergences. However, the computation of the value of the ground

state energy de�ned by the functional integral

e�V3"vac =
Z
D e�S( ); (38)

with V3 being a spatial volume, does contain ultraviolet divergences. We extend the

prescription of the MS scheme (remove poles in �) to the vacuum graphs. Thus, vacuum

counter-terms are

V ct
2 = � 1

16�24�
[6m2

Dg
2
3 + 3m2

3g
2
3];

V ct
4 = � 1

(4�)44�
[e1g

6
3 + e2g

4
3�3 + e3g

2
3�

2
3 + e4�

3
3]; (39)

(�A-terms are, for brevity, not included). Since in the MS scheme linearly divergent

integrals are equal to zero, there are no 1- or 3-loop counterterms. After this renor-
malization the vacuum energy density "vac is �nite, but �3 dependent. For example,
the 2-loop expression for the ground state energy of the unbroken phase found from
VMS(� = 0) in (34) is:

V (0) = �hV1(0) + �h2V2(0)

= � �h

12�
[3m3

D + 4m3
3(�3)]

+
3�h2

16�2

�
(2g23 log

�3

2mD

+
3

2
g23 +

5

4
�A)m

2
D + g23mDm3 +

+(g23 log
�3

2m3

+
3

4
g23 + 2�3)m

2
3

�
: (40)

Clearly, the �3 dependence here is a reexion of the arbitrariness in the de�nition of

"vac.
The relation of the ground state energy to the e�ective potential is obvious. The

latter is de�ned through

e�V3V (�)�J� =
Z
D e�S( )�J = e�W (J); (41)

with � = W 0(J). The external current J is needed to give the scalar �eld the required
value �. If the external current vanishes, V 0(�) = �J = 0, the system settles in its

physical ground state and by evaluating eq.(41) we obtain the value of the e�ective
potential at its minimum, V (v(T )) , V 0(v(T )) = 0. This is precisely the ground state

energy "vac of the 3d theory de�ned above by (38).

4.2 Renormalized condensates in MS scheme

Now we are ready to de�ne gauge-invariant condensates. Our 3d theory contains �ve

di�erent parameters, g23;m
2
3;m

2
D; �3 and �A. So, there are �ve special condensates

13



that can be computed by a simple di�erentiation of the ground state energy density.

Since "vac is �nite, all its derivatives are �nite (but �3-dependent). So, we de�ne the

renormalized condensates as corresponding derivatives of "vac. They are related to the

unrenormalized condensates as follows:

1. Quadratic scalar condensates:

h�y�iR =
@"vac

@m2
3

= h�y�i � 3

64�2�
g23; (42)

1

2
hAa

0A
a
0iR =

@"vac

@m2
D

=
1

2
hAa

0A
a
0i �

6

64�2�
g23:

2. Quartic scalar condensates:

h(�y�)2iR =
@"vac

@�3
= h(�y�)2i+ @f2m

@�3

h�y�i
64�2�

+
@V ct

4

@�3
; (43)

1

4
h(Aa

0A
a
0)

2iR =
@"vac

@�A
=

1

4
h(Aa

0A
a
0)

2i + @f2D

@�D

hAa
0A

a
0i

128�2�
+
@V ct

4

@�A
:

3. Gauge condensate:

�1

4
hF a

ijF
a
ijiR = g23

@"vac

@g23
= �1

4
hF a

ijF
a
iji + g23

@f2m

@g23

h�y�i
64�2�

+g23
@f2D

@g23

hAa
0A

a
0i

128�2�
+ g23

@(V ct
2 + V ct

4 )

@g23
: (44)

All renormalized condensates de�ned above are �nite but �3-dependent.
For completeness, we also write here the relations between the condensate of the

kinetic part of the action with other unrenormalized condensates. These follow from

the independence of the ground state energy on the normalization of the � and A0

�elds in the functional integral (38):

h(Di�)
y(Di�) + (m2

3 + �m2)�y�+ 2�3(�
y�)2 + h3A

a
0A

a
0�

y�i = const;

h(DiA
a
0)
y(DiA

a
0) + (m2

D + �m2)Aa
0A

a
0 + �A(A

a
0A

a
0)

2 + 2h3A
a
0A

a
0�
y�i = const;(45)

which are nothing but Schwinger{Dyson equations. The constants here do not depend

on the parameters of the theory.

The condensates themselves do not have much physical meaning, just because they
(and the ground state energy) are dependent on the normalization point. However,

if the system exhibits a �rst-order phase transition, then in the di�erences between
condensates in di�erent phases the �3 dependence cancels out. An important physi-

cal characteristic of the system, namely the latent heat, is related to the jump of the
renormalized (or, what is the same, unrenormalized) Higgs scalar condensate. Another

application of condensates is that they can be measured on the lattice with high accu-

racy. Below we will provide a relation between condensates on the lattice and in the
continuum.

14



4.3 The latent heat of the phase transition

The computation of the latent heat of the �rst-order phase transition is based on three

equations.

1. The ground state energy density depends on six dimensionful variables and has the

dimensionality GeV3. From here we get

[g23
@

@g23
+ �3

@

@�3
+ �A

@

@�A
+ 2m2

3

@

@m2
3

+ 2m2
D

@

@m2
D

+ �3
@

@�3
]"vac = 3"vac: (46)

2. The di�erence between the ground state energies �" of the broken and unbroken

phases is renormalization group invariant (�3-independent). Therefore

�3
d�"vac

d�3
= [�3

@

@�3
� f2m

16�2
@

@m2
3

� f2D

16�2
@

@m2
D

]�"vac = 0: (47)

3. The derivative of �" with respect to the temperature for g; � and mH �xed 12 at
the transition point (where �" = 0) is just

T 2d�"vac

dT
= m2

HT�h�y�i: (48)

Remembering that, in 4d notation, �"vac = �F=T = ��p(T )=T , this is nothing but
the latent heat L = �[Tp0(T )] of the transition. Here F is the free energy and p is

the pressure of the system. According to (42), the jump of this order parameter does
not contain any divergences, and, therefore, does not depend on the regularization
scheme. The simplicity of expression (48) could be contrasted with the form of the
corresponding expression in 4d theory [6].
Another quantity which may be of interest is the di�erence between the ground state

energies in the close vicinity of the phase transition. It is given by

�"vac = ��1

3
h
Z
d3x

V3

�
1

4
F a
ijF

a
ij � 2(m2

3 + �m2 +
f2m

32�2
)�y�� �3(�

y�)2

�(m2
D + �m2

D +
f2D

32�2
)Aa

0A
a
0 �

1

4
�A(A

a
0A

a
0)

2

�
i: (49)

We stress that all condensates appearing in this expression are unrenormalized, so that

there is no di�culty in putting it on the lattice.

5 Perturbative results for the ground state energy

and h�y�i

In this section, we shall compute the ground state energy "vac = V (v(T )), V 0(v(T )) = 0

and the scalar condensate h�y�i in 2-loop perturbation theory. The second can be

12We neglect here the slow logarithmic variation of all coupling constants with the temperature.
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obtained from the �rst by the use of eq.(42) and the �rst can be obtained from the

2-loop e�ective potential (34).

In perturbation theory the e�ective potential is derived as an expansion with respect

to the Planck constant �h, which serves as a loop counting parameter:

V (�) =
NX
n=0

�hnVn(�): (50)

Simultaneously, the equation for the determination of the vacuum expectation value

v(T ) is
NX
n=0

�hn
dVn(�)

d�

����
�=v(T )

= 0: (51)

We should now solve v(T ) from (51) and insert in (50). Two di�erent regimes should

be distinguished.

1. The \classical" regime. In this case, spontaneous symmetry breaking occurs on

the tree level, and the equation dV0(�)=d� = 0 has a non-trivial solution, v2(T ) = �m2

3

�3
.

If the expansion parameter � = g23=(�mT ) =
2
�

q
g23�3=(�m2

3) is small enough, eq. (51)
can be solved perturbatively:

v(T ) =
NX
n=0

�hnvn(T ): (52)

Inserting this in (50), the ground state energy becomes a power series in �h up to the

order N :

"vac =
NX
n=0

�hnVn(�)j�=v(T ); (53)

where all terms containing powers of �h higher than N should be dropped. It is assumed
that Vn(�) are re-expanded in powers of �h. This approximation works provided that

m2
3 < 0; jm2

3j � g23�3: (54)

2. The Coleman-Weinberg regime. Here spontaneous symmetry breaking occurs

due to radiative corrections and the equation dV0(�)=d� = 0 need not have non-trivial
solutions. The conditions (54) are not satis�ed. In this case a perturbative solution of
eq. (51) makes no sense. So, eq. (51) should be solved exactly. We denote the solution

by vN(T ). Again, if the parameter � = g23=(�mT ) = 2g3=(�vN(T )) is small enough, the

quantity

"vac =
NX
n=0

�hnVn(vN(T )) (55)

is a good approximation to the ground state energy. One usually enters the Coleman-

Weinberg regime when the tree scalar mass is small enough and when �3 � g23. For
m2

3 = 0, expression (55) provides an expansion of the vacuum energy with respect

to �3=g
2
3; in each order of �3=g

2
3 the summation of all powers of �h is automatically
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performed. Very close to the phase transition the �rst method certainly fails and the

second method should be used. On the contrary, if condition (54) is satis�ed, then a

Coleman-Weinberg type of computation of the ground state energy can be performed

as well. In 3d, if the e�ective potential is computed up to the terms of order �hN , then

the di�erence between the two computations is of the order of �h(N+ 1

2
). The fractional

power of �h is due to the contribution of Goldstone bosons to the e�ective potential,

which produces infrared-dangerous terms in the second type of computation. Since

fractional powers of �h must be absent, the �rst method of computation should be used

in this regime.

Below we shall derive explicit formulas for the ground state energy in the broken

phase in the 2-loop approximation in the classical regime. The Coleman-Weinberg type

of computation does not require any additional analytic work: simply, one numerically

minimizes the 2-loop potential de�ned in eq.(34) and then determines the ground state

energy at the minimumof the potential. Finally, one can use (42) for the determination

of condensates.

5.1 The ground state energy to order �h2

Let us compute "vac = V (v(T )) in the classical regime, when spontaneous symmetry
breaking occurs already at tree level,

�20 =
�m2

3

�3
: (56)

It is assumed that �m2
3 > 0, and su�ciently large. At this point the masses are

�m2
T =

�m2
3g

2
3

4�3
; �m2

L = m2
D + �m2

T ; �m2
1 = �2m2

3; �m2
2 = 0 (57)

and the leading approximation to V (v) is:

V0(v) = �m4
3

4�3
: (58)

The corrections to eqs.(56) and (58) can be obtained from the 2-loop result (I.33)
for the e�ective potential as follows. The de�nition of v is

V 0(v) = 0; V (v) = V0(v) + �hV1(v) + �h2V2(v) +O(�h3); (59)

where v2 coincides with �20 only to leading order. To higher orders (note that v2(n) is

the order �hn contribution to v2, not (vn)
2)

v2 = v2(0) + �hv2(1) + �h2v2(2) +O(�h3): (60)

Inserting this in V 0(v2) = 0 (prime means derivative with respect to �2) and expanding
gives the equations

m2
3 + �3v

2
(0) = 0; (61)

�3v
2
(1) + 2V 0

1 (v
2
(0)) = 0; (62)

�3v
2
(2) + 2V 00

1 (v
2
(0))v

2
(1)+ 2V 0

2 (v
2
(0)) = 0: (63)
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For later use, we tabulate the partial derivatives of V1:

@V1

@m2
3

= � �h

8�
(m1 + 3m2); (64)

@V1

@�2
= �3�h

8�
�3[m1 +m2 +

g23
4�3

(2mT +mL)]; (65)

@2V1

@�2@m2
3

= � 3�h

16�
�3

�
1

m1

+
1

m2

�
; (66)

@2V1

@�2@�2
= � 3�h

16�
�23

�
3

m1

+
1

m2

+

�
g23
4�3

�2� 2

mT

+
1

mL

��
: (67)

From these one �nds

v2(0) = �20 =
�m2

3

�3
; (68)

v2(1) = � 2

�3
V 0

1(v
2
(0)) =

3

4�

�
�m1 +

g23
4�3

(2 �mT + �mL)

�
; (69)

v2(2) =
4

�23
V 00

1 (v
2
(0))V

0

1(v
2
(0))�

2

�3
V 02(v

2
(0))

=
9

32�2
�3

�
3

�m1

+
1

�m2

+
�
g23
4�3

�2� 2

�mT

+
1

�mL

��
[ �m1 +

g23
4�3

(2 �mT + �mL)]

� 2

�3
V 0

2(v
2
(0)): (70)

We have here explicitly written out the \disconnected" parts that follow from the
derivatives of the 1-loop potential. The 2-loop expressions follow automatically from
eq.(34), but are much lengthier. Note that the second derivatives of V1 in (66,67)
contain terms � 1=m2, which diverge at the saddle point. Similar terms appear in the
�rst derivatives of V2. Evaluating the �rst derivative dV2=d�

2 one can show that the

1=m2-terms cancel between the 1- and 2-loop parts in eq.(70) before taking the limit
m2 ! 0. This cancellation actually takes place only in the Landau gauge [27], but this
is not surprising since v(T ) is not a physical gauge invariant quantity.

With this expansion of v2(T ) we can write

V (v(T )) = V0(v
2
(0) + �hv2(1) + �h2v2(2)) + �hV1(v

2
(0) + �hv2(1)) + �h2V2(v

2
(0)) =

= V0(v
2
(0)) + �hV1(v

2
(0)) + �h2fV2(v2(0))� ��13 [V 01(v

2
(0))]

2g

= �m
4
3(�3)

4�3
� �h

12�
(6 �m3

T + 3 �m3
L + �m3

1) (71)

+�h2
�
V2( �mT ; �mL; �m1;m2 = 0)� 9�3

64�2

�
�m1 +

g23
4�3

(2 �mT + �mL)

�2�
:

In other words, the value of V (v) in the loop expansion is given by the value of the

2-loop potential for the saddle point masses in eq.(57) corrected to order �h2 by the last
term in eq.(71). This corresponds to a set of 1-particle reducible diagrams, which are

neglected in the computation of the e�ective potential.
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We shall later also need the 3- and 4-loop contributions to V (v(T )). These are

V(3)(v(T )) = V3 + (V 0

2 +
1

2
V 001 v

2
(1))v

2
(1); (72)

V(4)(v(T )) = V4 + [V 03 +
1

2
V 00

2 v
2
(1) +

1

6
V 0001 (v2(1))

2]v2(1)�
1

4
�3(v

2
(2))

2;

where all the potentials should be evaluated at the saddle point as in (71). These

equations can be used for an estimate of the higher-order corrections to the e�ective

potential through the lattice measurements of the scalar condensate.

For completeness we also present 2-loop expressions for the unbroken phase. If

m2
3 > 0, there is another symmetric phase saddle point at �20 = 0 with the associated

mass values

~mT = 0; ~mL = mD; ~m2
1 = ~m2

2 = m2
3 (73)

and a vanishing leading minimum value

V0(0) = 0: (74)

At the point (73) higher-order loop expansion will lead to infrared divergences, but
to this order one similarly obtains v = O(�h3) = 0 (h�y�i is non-vanishing, see below)
and V (0) = �hV1(0) + �h2V2(0) as given by eq.(40). Note the explicit �3-dependence

here. As it should, the di�erence V (v(T ))� V (0) computed from eqs.(71) and (40) is
independent of �3 to this order in �h.

5.2 Computation of h�y�i to 2 loops

The result for h�y�i to 2 loops can now be directly obtained from the expansion (68-70)
and the general formula (42). According to (42) we have, in the broken phase (

R
d3x=V3

is implied in the averages),

h�y�i =
@(V0 + V1 + V2)

@m2
3

=
1

2
[v2(0)+ �hv2(1)+ �h2v2(2)] +

@V1(v
2
(0))

@m2
3

+
@2V1(v

2
(0))

@m2
3@�

2
�hv2(1) +

@V2(v
2
(0))

@m2
3

= h�y�i(0) + �hh�y�i(1) + �h2h�y�i(2); (75)

where

h�y�i(0) =
�m2

3

2�3
; (76)

h�y�i(1) =
@V1

@m2
3

� @V1

�3@�2
=

1

4�

�
�m1 +

3g23
8�3

(2 �mT + �mL)

�
; (77)

h�y�i(2) =
1

2
v2(2) +

@2V1(v
2
(0))

@m2
3@�

2
v2(1) +

@V2(v
2
(0))

@m2
3
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=

�
� 1

�3

@2V1

@�2@�2
+

@2V1

@m2
3@�

2

��
� 2

�3

@V1

@�2

�
+

�
@V2

@m2
3

� @V2

�3@�2

�

=
9�h2

64�2
�3

�
2

�m1

+

�
g23
4�3

�2� 2

�mT

+
1

�mL

��
[ �m1 +

g23
4�3

(2 �mT + �mL)]

�2 @V2
@m2

1

� g23
4�3

�
@V2

@m2
T

+
@V2

@m2
L

�
� 1

�3

@V2

@�2
: (78)

All derivatives here should be evaluated at the saddle point masses in eq.(57); in

practice those of V2 are most conveniently evaluated numerically. The 1-loop expression

(77) will be written later in a more general form, appropriate for lattice regularization,

by using the tadpole function I(m) introduced in Appendix A. Note that here also poles

in m2 are generated by the derivatives dm2=dm
2
3 = 1=2m2 and dm2=d�

2 = �3=2m2.

Because m2
2 = m2

3+ �3�
2, these precisely cancel in eq.(78) and leave only the terms in

the last of eqs.(78). As shown in [27] this cancellation takes place for any gauge �xing

parameter �, as should for a physical quantity.

In the symmetric phase one similarly obtains from eq.(40) that13

h�y�isymm = ��hm3

2�
+

3�h2

16�2

�
g23 log

�3

2m3

� 1

4
g23 + 2�3 +

g23mD

2m3

�
: (79)

In a 3d theory the perturbative computation of h�y�i contains a linear 1-loop and
logarithmic 2-loop divergence and these have been treated above in the continuum MS

scheme. Due to their importance for the lattice computation it may be useful to specify
their origin once more. Their coe�cients can be obtained as follows:

h2�y�i = 2
dV (v(T );m2

3)

dm2
3

+ h
3X
0

�2aidiv

= 2
dV (v(T );m2

3)

dm2
3

+ 4
Z

d3p

(2�)3
1

p2 +Ap
=

= 2
dV (v(T );m2

3)

dm2
3

+ 4
Z

d3p

(2�)3
1

p2
+
3g23
4

Z
d3p

(2�)3
1

p3
+ ::: ; (80)

where A = �3g23=16 is the coe�cient of the linear term in the 1-loop Higgs self-energy

(��(k) = Ak, [2], eq.(83)). In other words, the linear divergence comes from the simple

scalar loop and the logarithmic divergence from the linear term in the scalar self energy
caused by the emission and absorption of a gauge particle.

The computation of the vacuum expectation value of the composite gauge invariant
operator �y� is related to the e�ective potential for this quantity introduced in [13].

We clarify this relation and compute the corresponding e�ective potential to 2 loops

in Appendix B.

13We would like to note here that since perturbation theory does not work in the unbroken phase

this expression cannot be used for any comparison with the lattice results.
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5.3 Computation of hAa
0A

a
0i to 2 loops

In contrast to the doublet Higgs �eld �, the triplet scalar �eld Aa
0 is dynamically

inessential and can be integrated over [2]. Due to the relatively large value of the mass

mD, the vev of the triplet scalar �eld is zero. For pure SU(2) gauge theory this has

been numerically studied in [29]. Thus the �eld Aa
0 feels the phase transition only in

that the �eld � in m2
L = m2

D + g2�2=4 develops an expectation value v(T ). In analogy

with � in the symmetric phase (eq.(79)) in 2-loop perturbation theory one can write

for the �nite part

hAa
0A

a
0i = 2

dV (v(T );m2
D)

dm2
D

= � 3

4�
mL +

+
3

16�2

�
g23

�
4 log

�3

2mL +mT

� 2m2
D � 2m2

T �mTmL

(2mL +mT )mL

+

+
8mT +m1 + 3m2

mL

�
+
5

2
�A

�
: (81)

The linear and logarithmic divergences are

hAa
0A

a
0idiv = 3

Z
d3p

(2�)3
1

p2
+
3g23
2

Z
d3p

(2�)3
1

p3
: (82)

6 The lattice action and the curves of constant

physics

6.1 The lattice action

The lattice action corresponding to the continuum Lagrangian in eq.(15) has the fol-
lowing form:

S = �G
X
x

X
i<j

(1 � 1

2
TrPij) +

+
1

2
�G
X
x

X
i

[TrA0(x)U
�1
i (x)A0(x+ i)Ui(x)� TrA2

0(x)] +

+
X
x

�A2
1

2
TrA2

0(x) +
X
x

�A4 (
1

2
TrA2

0(x))
2 + (83)

+�H
X
x

X
i

[
1

2
Tr �y(x)�(x)� 1

2
Tr�y(x)Ui(x)�(x+ i)] +

+
X
x

[(1� 2�R � 3�H)
1

2
Tr �y(x)�(x) + �R(

1

2
Tr�y(x)�(x))2]

�1

2
�H

X
x

[
1

2
TrA2

0(x)
1

2
Tr�y(x)�(x)]:
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Here Ui(x) and Pij are the standard link and plaquette variables, the scalar �eld � on

the lattice is related to the continuum scalar �eld � through

� = V RL; R2
L =

2a

�H
�y� =

1

2
Tr�y�; (84)

where a is the lattice spacing, V is a unitary SU(2) matrix, RL is the radial mode of

the Higgs �eld, and the lattice matrix �eld A0 is given in terms of continuum �eld Aa
0

as

A0 =
1

2
ig3a�aA

a
0: (85)

The main aim of this section is to �nd the relation between the parameters �G, �H,

�R; �
A
2 and �A4 of the lattice action and the parameters g23, �3, m

2
3; �A, m

2
D of the

3d continuum theory. The super-renormalizable character of the 3d theory allows one

to write the relation in a form that is exact in the continuum limit N ! 1; a !
0; N=�G !1. The 3d continuum parameters were related to the physical 4d ones in
the previous section.

The lattice{continuum relation is established in several steps:
1. In subsection 6.2 we formulate the general problem of de�ning the constant physics
curves in the 3d gauge-Higgs system. Then (subsection 6.3) we consider simpli�cations
arising in electroweak theory and show that the problem is reduced to the computa-
tion of three pure numbers (�; ��; ~�) { originating from three di�erent classes of 2-loop

diagrams contributing to the Higgs self-energy. In subsections 6.4{6.6 we compute two
of those numbers (�� and ~�) analytically and formulate a way of MC computation of
the third one (�).
2. In subsection 6.7 we work out an exact relationship between the condensates in the
lattice regularization scheme and MS scheme.
4. Finally, in Section 7 we use the 2-loop continuum computation in Section 5 and the

relationship between di�erent renormalization schemes in subsection 6.7 to determine
the constant � by comparison of the lattice data with perturbation theory. This allows
one also to estimate the magnitude of 3-loop corrections to the e�ective potential and
the magnitude of 2-loop �nite a e�ects.

6.2 Constant physics curves: general formulation of the prob-

lem

In the tree approximation all the �ve lattice coupling constants are given in terms of

continuum ones by the following equations, which directly follow from the discretization

procedure and the form of the continuum Lagrangian:

�G =
4

g23

1

a
; (86)

�R =
1

4
�3a�

2
H =

�3

g23

�2H
�G
; (87)
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�A4 =
�A

g23
�G; (88)

m2
3jtree =

2(1 � 2�R � 3�H)

�Ha2
; (89)

m2
Djtree = �2 �A2

�Ga2
: (90)

The �rst three relations (86,87,88) are not spoiled by the renormalization procedure

and are exact in the continuum limit, while (89) and (90) are modi�ed when radiative

corrections are taken into account. As we have discussed in [2], 1-loop and 2-loop

counterterms must be added, so that in the continuum limit a! 0 we have the exact

relations

2(1� 2�R � 3�H)

�Ha2
= m2

3(�3)� f1m
�

4�a
� f2m

16�2
log(

6

a�3
)� P2m

16�2
; (91)

�2 �A2
�Ga2

= m2
D(�3)� f1D

�

4�a
� f2D

16�2
log(

6

a�3
)� P2D

16�2
; (92)

de�ning the constant physics curves. Here � = 3:17159 (Appendix A) and the coef-

�cients fi of the linear 1-loop and logarithmic 2-loop terms were given in the section
3. However, one also needs the 2-loop constant terms (when a ! 0) P2m and P2D
and their determination is our main task. Note that the above relations are, in fact,
�3-independent, due to the �3-dependence of the mass parameters in the minimal sub-
traction scheme.
Exactly as f2m and f2D, the constants P2m and P2D are, for dimensional reasons,

quadratic polynomials constructed from the coupling constants g23; �3 and �A. The
coe�cients in the polynomial Pi can be determined by explicit computation of the 2-
loop mass renormalization in lattice regularization. There are at most six dimensionless
numbers (�i) determining P2m:

P2m = �gg
4
3 + ���

2
3 + �A�

2
A + �g�g

2
3�3 + �gAg

2
3�A + �A��3�A: (93)

From the structure of the 2-loop scalar mass renormalization graphs, one can see that

�A� = �A = 0, so that four numbers should be determined. In the A0 case we have, in

complete analogy:

P2D = �gg
4
3 + ���

2
3 + �A�

2
A + �g�g

2
3�3 + �gAg

2
3�A + �A��3�A: (94)

For the same reasons as in the scalar doublet case we have �A� = �� = 0. So, the

general analysis of this 3d theory requires a knowledge of eight pure numbers which
�x the relation between the lattice renormalization and MS schemes. To �nd them,
one should compute the renormalization of the Higgs and A0 masses on the 2-loop

level in MS and the lattice regularization schemes, and compare the results. Once they

are known, there is a one-to-one correspondence between the lattice couplings and
continuum parameters which allows one to relate the results of lattice simulations to

the 3d e�ective theory. Then, to relate 3d and 4d high- temperature physics one should
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use (28) and (30). The two so far unknown constants in (30) are to be computed by

comparison of continuum 3d 2-loop renormalization of the Debye screening mass with

corresponding 4d computations. To summarize, we have 10 numbers to be determined

to relate 3d lattice simulations to 4d high temperature theory.

6.3 Simpli�cations for EW theory

In the context of the EW transition the problem can be simpli�ed, with a good accu-

racy, by making use of the fact that the coupling constant �A = 17g2

48�2
g23 is numerically

very small and that there is no g43-term in f2D. This allows one to use a formal

expansion with respect to the 4d coupling constant g, assuming for power counting

that � � g2 and keeping at most the terms � g4 in the previous expressions. In

this approximation14f2D = 0, while the polynomials P2m and P2D are de�ned by �ve

constants �g; �g�; �� and �g; �g�. In more detail, we shall parametrize

P2m =
81

16
g43� + 9�3g

2
3�� � 12�23~� + f2mc; (95)

where c is the constant de�ned in eq.(29). This will cancel when m2
3(�3) is related to

4d physics.
Another simpli�cation takes place when we notice that the mass of the A0 �eld is

parametrically and numerically larger than that of the vector boson and scalar �eld

near the phase transition in the broken phase, at least for a su�ciently heavy Higgs
boson [2]. In addition, the A0 mass in the unbroken phase is parametrically larger than
the typical 3d mass scale g23. So, in principle the A0 �eld can be integrated out and
a theory without the A0 �eld with modi�ed coupling constants can be formulated [2].
From eqs.(I.51,I.52,I.53) one can see that the uncertainty of the order of g4 in the Debye
mass gives an order g6 uncertainty in the gauge and scalar self-coupling constants and

an O(g5) uncertainty in the Higgs mass. These are higher-order terms according to our
convention. Therefore, we take P2D = 0 and omit the O(g4) terms from eq.(30).
Note that the formal suppression of the higher-order terms does not necessarily imply

numerical suppression. We consider the systematic uncertainties associated with the
ignorance of those terms below.

To summarize, the approximate constant physics curves for the electroweak theory
are given by eqs.(91,92) with

f2D = P2D = �A = �gA = �A� = 0 (96)

and P2m given by eq.(95).
In spite of all these simpli�cations we still have to compute three numbers, �; �� and

~�. In the next subsection and Appendix A we carry out an analytic computation of the
parameters ~� and ��. The one remaining parameter will be determined by a combination

of analytical and Monte Carlo methods.

14Formally, f2D is multiplied by log 2

aT
= log g2�G

2
, which is singular in the continuum limit. How-

ever, in real lattice simulations with �G < 40, the value of this log never exceeds 2, and this term may

be neglected. We will estimate the possible inuence of this term on the results below.
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The previous discussion referred entirely to the 3d e�ective theory. To have an

explicit relation between the temperature and lattice parameters, we introduce into

eq.(91) the explicit relations between the parameters of the 4d and 3d theories in

eqs.(28). Using the parametrization (95) the constant physics curve becomes

m2
H

4T 2
=

1

2
 +

1

(Ta)2

�
3� 1

�H
+
2�R

�H
� Ta

f1m

8��

+(Ta)2
f2m

32�2
log

Ta

2
+ (Ta)2

f2m � cP2m

32�2

�
; (97)

where

 =
3

16
g2 +

1

2
� +

g2

16�2

�
149

96
g2 +

3

4
�

�
: (98)

In a more explicit form this is

m2
H

4T 2
=

�
g2�G

4

�2�
3� 1

�H
+

m2
H

4m2
W

�H

�G
� 9

8��G

 
1 +

m2
H

3m2
W

!
� �

�1

2

�
9

4��G

�2��
1 +

2m2
H

9m2
W

� m4
H

27m4
W

�
log

g2�G

2
+ � +

2m2
H

9m2
W

�� � m4
H

27m4
W

~�
��

+
g2

2

�
3

16
+

m2
H

16m2
W

+
g2

16�2

�
149

96
+

3m2
H

32m2
W

��
: (99)

It is illuminating to de�ne from here �H for large �G. One �nds that

�H(T ) = �H(T =1) +
�

2mH

3g2�GT

�2
+O(��3G ); (100)

where

�H(T =1) =
1

3
+

1

�G

�
�

8�

�
1 +

m2
H

3m2
W

�
� m2

H

108m2
W

�

� 1

9�2G

�
8

g4
 � 1

3
(A� �=12)(A � �=6) �B

�
+O(��3G ); (101)

where the abbreviations are: � = m2
H=m

2
W , A = 9�(1 + �=3)=8� and B = second

line of eq.(99) without sign and the factor 1=�2G. One sees that the T -dependence of
�H is very simple and that the interval between �H = 1=3 and �H = �H(T = 1) is

unphysical.
The constants �, �� and ~� can be found by computing the 2-loop Higgs mass renor-

malization in the lattice scheme. Instead of considering only this, we prefer to work in

an equivalent language, namely with the e�ective potential. This will allow us to get
simultaneously a number of results concerning the values of di�erent condensates in
the ground state. To make the method clear we shall �rst consider the simplest case,

the computation of ~�.

For those who are not interested in details of computations we give the result below:

� = 2:18(6); �� = 1:01; ~� = 0:44; (102)
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where only MC statistical errors in determination of � are shown.

In [4] some combinations of these numbers, relevant for the study of mH = 80

GeV Higgs boson were presented. At that time the quantity �� was computed by MC

methods, rather than analytically. Due to a mistake in the computation of parameter

~�, made in [4], the numbers in [4] must be corrected as follows: in eq.(11) of [4] � = 2:0

instead of 1:35, and in eq.(13) �� = 0:66 instead of �4:70. This change slightly a�ects

the extraction of the critical temperature from the lattice data, but does not a�ect

qualitative results and conclusions of [4], see [3].

6.4 The 2-loop lattice e�ective potential in scalar theory:

computation of ~�

The constant ~� multiplies the scalar coupling constant. Therefore, it can be computed

in pure scalar theory with SU(2) symmetry. To be more general we take the SO(N)

scalar theory with the scalar �eld in a fundamental representation, considered in Ap-
pendix B.1 of ref. [2] (the case we are interested in corresponds to N = 4). Since the
perturbative computations in scalar �eld theory on the lattice are not so complicated
as in gauge theories, the 2-loop lattice e�ective potential accounting for �nite size and
�nite a e�ects can be quite easily computed.

The continuum Lagrangian is (in this subsection, �3 ! �;m3 ! m)

L =
1

2
(@i�a)

2 +
1

2
m2�2a +

1

4
�(�2a)

2; (103)

and the 2-loop e�ective potential for the scalar �eld �0 in the MS scheme is:

VMS(�0) =
1

2
m2(�)�20 +

1

4
��40 �

� 1

12�
[m3

1 + (N � 1)m3
2] + (104)

+
�

64�2
[3m2

1 + 2(N � 1)m1m2 + (N2 � 1)m2
2]�

�3 �2

16�2

�
log

�

3m1

+
N � 1

3
log

�

m1 + 2m2

+
N + 2

6

�
�20;

where m2
1 = m2(�) + 3��20, m

2
2 = m2(�) + ��20 and

�
@m2(�)

@�
= � f2m

16�2
; f2m = �2(N + 2)�2: (105)

In order to �nd the relation between the MS and the lattice regularization schemes,
we have to perform the corresponding computation on the lattice. We take the lattice

Lagrangian in the form

LL =
1

2
(�i�a)

2 +
1

2
m2
B�

2
a +

1

4
�(�2a)

2; (106)
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where �i is a lattice di�erence in the i-th direction and mB is the bare mass. Then

the e�ective potential is given by (�h is a loop counting parameter)

VL = Vtree + �hV1-loop+ �h2V2-loop (107)

with

V1-loop = J(m1L) + (N � 1)J(m2L); (108)

V2-loop =
�

4
[3I(m1L)

2 + 2(N � 1)I(m1L)I(m2L) + (N2 � 1)I(m2L)
2]

�3�2[HL(m1L;m1L;m1L) +
N � 1

3
HL(m1L;m2L;m2L)]�

2
0; (109)

where m2
1L = m2

B + 3��20, m
2
2L = m2

B + ��20, and the functions I; J and HL are the

lattice analogues of the continuum tadpole, 1-loop energy and sunset diagram functions,

de�ned in Appendix A. For small am these functions have the following expansion in
powers of the lattice spacing a:

I(m) =
1

4�a
[�� (am)� �(am)2 +O((am)3)]; (110)

J(m) =
1

4�a3
[const +

1

2
�(am)2 � 1

3
(am)3 � 1

4
�(am)4 +O((am)5)]; (111)

HL(m1L;m2L;m3L) =
1

16�2

�
log

6

a(m1L +m2L +m3L)
+
1

2
+ �

�

� H(m1L;m2L;m3L) +
1

16�2

�
log

6

a�
+ �

�
: (112)

where the numbers � and � were determined numerically, � = 0:15281; � = 0:09.
Expanding for small a one obtains

VL =
1

2
m2
B�

2
0 +

1

4
��40 �

�ha�

16�
[m4

1L + (N � 1)m4
2L]

+

�
�h
�

8�a
� �h2

���(N + 2)

32�2

�
[m2

1L + (N � 1)m2
2L]

� �h

12�
[m3

1L + (N � 1)m3
2L]� �h2

��(N + 2)

32�2a
[m1L + (N � 1)m2L]

+�h2
�

64�2
[3m2

1L + 2(N � 1)m1Lm2L + (N2 � 1)m2
2L]

� 3�2

16�2
[HL(m1L;m1L;m1L) +

N � 1

3
HL(m1L;m2L;m2L)]�

2
0: (113)

With the choice of the following relation between the lattice and continuum masses

m2
B = m2(�) � �h�(N + 2)

�

4�a
+ �h2

�2(N + 2)

8�2

�
log

6

a�
+ �

�
: (114)
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we get

VL = VMS + �h
N�

8�a
m2: (115)

Note, in particular, that

m3
1L + �h

3�(N + 2)

8�a
m1L =

�
m2

1L + �h
��(N + 2)

4�a

�3=2
+O(�h2) = m3

1 +O(�h2); (116)

that in 2-loop terms m1L and m1 are equivalent and also that the term � am4
1L !

constant when a! 0. Of course, m2
B is �-independent. In terms of the parametrization

in eq.(95) we have

P2m = f2m(~� + c); ~� = � � c = 0:44: (117)

This completes an estimate of ~�.

6.5 The e�ective potential in MS and lattice regularization

schemes

Since the lattice regularization provides nothing but another subtraction scheme in
perturbation theory, and since the only divergences of the 3d theory are those related
to mass and vacuum energy renormalization, the exact lattice e�ective potential can
di�er from the exact MS continuum one by only two types of terms. The �rst one,
multiplying �2=2, is associated with the Higgs mass renormalization, and knowing

it would give us the unknown constants in P2m. The second is a �-independent piece
connected with the renormalization of the ground state energy. Just by power counting,
it comes from diagrams up to 4-loop order. It is irrelevant for the study of the phase
transitions but will be related to the di�erent condensates introduced in Section 4.
Generalizing the result for the scalar theory derived above, the a ! 0 limit of the
lattice e�ective potential is thus

VL(�) = VMS(�) + f1m
�

4�a

1

2
�2

+
1

16�2
[f2m(log

6

a�
+ c) +

81

16
g43� + 9�3g

2
3�� � 12�23~�]

1

2
�2

+V vac
L : (118)

In section 4 we have already speci�ed the renormalization of the vacuum energy or

the convention for the value of VMS(� = 0). This is a nonphysical divergent quantity

and its value could thus be �xed at will. Now when it is �xed, any additional lattice

e�ect is contained in V vac
L .

The general form of V vac
L to di�erent orders in the loop expansion can be �xed as

follows. The 1-loop contribution to it, V vac
1L , can be found from the 1-loop lattice

e�ective potential, which as a direct generalization of eq.(108) or of eq.(33) is

V L
1-loop = 6J(mT ) + 3J(mL) + J(m1) + 3J(m2); (119)
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where the particle masses are given by eqs.(35). To this order the lattice bare mass

m2
B and m2

3 are equivalent. Including the m
2=a-term in the expansion of J(m) one has

V vac
1L =

�

2�a
m2

3 +
3�

8�a
m2
D: (120)

The 1-loop term comes just from a bare loop and no coupling constants enter. To 2

loops, �rst powers of g23 and �3 enter and the structure of the 2-loop constant term is

V vac
2L =

1

16�2
[m2

D(a1g
2
3 + a2�3) +m2

3(a3g
2
3 + a4�3)]: (121)

From the consideration of possible 2-loop diagrams, a2 = 0. Similarly, from the compu-

tation of the previous section we �nd directly that a4 = 0 (in scalar theory the 2-loop

lattice potential for a ! 0 vanishes when � = 0, see (115)). The dependence of a1
and a3 on the renormalization scale can be established from the obvious fact that the

lattice e�ective potential or VMS(� = 0) + V vac
2 must be �3-independent. From the

explicit expression for VMS(� = 0) in eq.(40) we get in the a! 0 limit

a1 / �6 log(a�); a3 / �3 log(a�): (122)

However, the real task is to compute the constant terms here, which will give ��.

The 3- and 4-loop ground state contributions are, analogously,

V vac
3 =

1

(4�)3a
[d1g

4
3 + d2g

2
3�3 + d3�

2
3]

V vac
4 = � 1

(4�)4
log(a�)[e1g

6
3 + e2g

4
3�3 + e3g

2
3�

2
3 + e3�

3
3]; (123)

where di and ei are pure numbers (we omitted for simplicity the contributions propor-
tional to �A). Since there is (for a! 0) nothing to compensate for the dimensionalities
of higher powers of coupling constants, there are no higher-loop contributions to Vvac.

6.6 The constants a3; a1 and ��

The constants a3 and a1 can be found from the computation of the vacuum energy 2-

loop diagrams (Fig. 1) in a theory with unbroken symmetry. This is equal to Vvac. The
constant �� can be found from the 2-loop mass operator of the Higgs �eld containing the

product of scalar and gauge coupling constants. In the Landau gauge the corresponding
graphs are shown in Fig. 2. We denote this contribution to the mass operator as ��g(p),

where p is the momentum. It is easy to see that

��g(0) = 3�3
@Vvac

@m2
B

: (124)

From here we get a relation between a3 and ��,

a3 = 3[log(
6

a�
) + �� + c]: (125)
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The constant a1 is proportional to a3 with a simple symmetry coe�cient, i.e. a1 = 2a3.

So, all three constants are related to one-another. We choose to compute the gauge

invariant quantity Vvac. This can be done in the unbroken phase, since this quantity is

by de�nition �-independent. The lattice gauge-Higgs vertices are shown in Fig. 3.

The contributions of the two Feynman diagrams are

ISV =
3

2
g23

Z
dp dq

1

q̂2(p̂2 +m2)

�X
i

cos(api)� (1� �)
1

q̂2

X
i

q̂2i cos(api)

�
(126)

and

ISSV = �3

4
g23

Z
dp dq

1

(p̂2 +m2)(k̂2 +m2)q̂2

X
ij

4

a2
sin

a

2
(2pi + qi) sin

a

2
(2pj + qj)

�
�ij �

1 � �

q̂2
4

a2
sin

a

2
qi sin

a

2
qj

�
; (127)

where Z
dp =

Z �=a

��=a

d3p

(2�)3
; q̂i =

2

a
sin

a

2
qi; q̂2 =

X
i

q̂2i ; k̂i = p̂i + q̂i (128)

and � is the gauge-�xing parameter. The way to handle the trigonometric factors in
the numerator is to separate from them terms that also appear in the denominator.
Additional lattice corrections then also appear. Thus, for example,

X
i

cos api = 3� 1

2
a2(p̂2 +m2) +

1

2
a2m2; (129)

X
i

q̂2i cos api = q̂2 � 1

2
a2
X
i

q̂2i p̂
2
i ; (130)

and, putting for brevity a = 2,

X
i

sin2(2pi + qi) =
X
i

[2 sin2 pi + 2 sin2(pi + qi)� sin2 qi � 4 sin2 pi sin
2(pi + qi)]

= 2(p̂2 +m2) + 2(k̂2 +m2)� q̂2 � 4m2 � 4
X
i

sin2 pi sin
2(pi + qi); (131)

X
ij

sin(2pi + qi) sin(2pj + qj) sin qi sin qj

=
X
ij

[sin2(pi + qi) � sin2 pi][sin
2(pj + qj)� sin2 pj ]; (132)

X
i

[sin2(pi + qi)� sin2 pi]

=
X
i

[sin2 qi + 2 sin pi sin qi(1� 2 sin2(
1

2
pi +

1

2
qi))]: (133)
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With these formulas and symmetries of the integrand one can �rstly show that the

term multiplying � in ISV + ISSV vanishes: this checks the gauge independence of the

result. In terms of the lattice integral I(m) one then obtains

ISV =
3

2
g23I(0)[3I(m)� 1

2a
+
1

2
(am)2I(m)]: (134)

In the MS scheme this vanishes since then I(0) = 0. For the SSV diagram one has

ISSV = �3

4
g23

�
4I(0)I(m)� I2(m)� 4m2HL(m;m; 0)

�a2
Z
dp dq

P
i p̂

2
i k̂

2
i

(p̂2 +m2)(k̂2 +m2)q̂2

�
; (135)

where HL is the lattice sunset function. The problem here is the last term; we �nd

numerically, by expanding for smallm, that it contains the term�4m2��=16�2, � = 1:94

(see Appendix A.2). Thus the total contribution to Vvac is

ISV + ISSV = 3g23[HL(m;m; 0)m
2 +

1

2
I(0)I(m) +

1

4
I2(m)� � m2 +

1

4
(am)2I(0)I(m)]:

(136)
In the MS scheme this reproduces the g23m

2
3 term in eq.(40). Now the additional terms

lead to the �nal result

a3 = 3[log(
6

a�
) + � +

1

4
�2 � �]: (137)

This gives �� = 1:01.
The most di�cult task is the determination of the constant �. Its computation with

lattice perturbation theory needs quite complicated 3- and 4- gluon vertices. We do not
attempt to make the corresponding computation. Instead, we determine this constant
with su�cient accuracy in MC simulations. The idea of that computation is simple.
One should pick up some quantity which can be perturbatively computed (at least to
2-loop accuracy) and compare it with a result of Monte Carlo simulations. We choose

the Higgs scalar condensate, de�ned below on the lattice, for these purposes. Its 2-loop
continuum computation follows directly from the e�ective potential, while it can be
determined by MC simulations with su�ciently high accuracy.

6.7 The quadratic condensates on the lattice

Any condensate de�ned in the MS scheme has its analogue on the lattice. The exact

relationship between the lattice and MS condensates follows from the results of this

and previous sections. We will give an explicit form for the quadratic scalar condensate
only, the relation between higher condensates requires computation of the ultraviolet

divergent vacuum graphs in the lattice regularization scheme on the 3- and 4-loop levels
(i.e. a computation of the coe�cients di and ei in eq.(123)). Using the exact relation

between the lattice and continuum e�ective potential we get for the scalar condensate:

h�y�ilatt =
�

2�a
+

3

16�2
[g23(log

6

a�
+ �� + c)] + h�y�iR; (138)
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or, in terms of the radial mode of the lattice scalar �eld:

�HhR2
Li =

8

g23�G
h�y�iR +

�

�
+

3

2�2�G

�
log

3g23�G

2�3
+ �� + c

�
: (139)

Knowing the e�ective potential, one also can obtain a width of distribution of the order

parameter R2 on �nite lattices. This point is discussed in Appendix C.

For the A0 condensate we have, in complete analogy:

hAa
0A

a
0ilatt =

3�

4�a
+

3

4�2
[g23(log

6

a�
+ �� + c)] + hAa

0A
a
0iR; (140)

or, in terms of the lattice notations

h1
2
TrA2

0i =
8

�2Gg
2
3

1

2
hAa

0A
2
0iR +

3

�G

�

4�
+

3

�2�2G

�
log

3g23�G

2�3
+ �� + c

�
: (141)

Of course, the lattice condensates are �3-independent, but divergent in the continuum
limit a!1.
We have now de�ned the relation between h�y�i in the continuum and on the lattice

and computed it to 2 loops in the continuum. The comparison of the continuum
computation with MC simulations will allow us to determine completely the constant

physics curve. In fact, this comparison will provide information on the magnitude of
higher order e�ects (3 loops, etc.) as well as on the magnitude of 2-loop �nite scaling
corrections (see below).

7 Monte Carlo determination of the constant physics

curves

Now we are ready for a Monte Carlo determination of the parameter � { the only one
left in the relation of the lattice regularization scheme to the continuum one.
Consider the theoretical prediction (139) for hR2

Li. This relation is exact in the
continuum limit. In real MC simulations, one has a �nite volume together with a �nite

lattice spacing a. So, there are �nite size as well as �nite a corrections to (139). Finite
size corrections are easy to deal with, because in the broken phase with a non-zero

mass gap m �nite size corrections die exponentially with lattice size, � exp(�mN).

Hence, for any �xed �G one can choose a volume large enough so that the value of hR2
Li

is volume independent. In other words, MC simulations can always be done in such a
way that �nite size corrections are not essential, and for �G < 40 the necessary volume

is not very large. For the discussion of the probability distribution for the quantity

h�y�i in the �nite volume, see Appendix C.
The �nite a corrections are power-like and, therefore, more important. A way to

improve the situation is to use the analytical lattice 1-loop expression for the average

h�y�i, generalizing eq.(77):

h�y�iL(1) =
�

4�a
� I(N;m1) +

3g23
8�3

�
3�a

4�
� 2I(N;mT )� I(N;mL)

�
: (142)
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Then the unknown �nite a e�ects appear on the 2-loop level only. With the use of

eq.(142) the theoretical prediction for h�y�i is

h�y�i = �m2
3

2�3
+ h�y�iL(1) + h�y�i(2) + �h�y�i; (143)

where �h�y�i represents the value of the unknown higher order continuum contribu-

tions.

Let us analyse in more detail the behaviour of the function � � �G�H�R
2 =

8=g23 ��h�y�i, where �R2 is the di�erence between the MC and the analytical results

(143) (we take �H corresponding to a \classical" regime, where spontaneous symmetry

breaking appears on the tree level). There are three mass scales in our theory in the

broken phase. Two of them (mT and m1) are related to each other through �mT= �m1 =

mW=mH. The third one is the Debye screening mass mD. The general structure of �

is:

� = f(amT ; amD) + (g23a) (
g23
�mT

; amT ; amD); (144)

where f(amT ; amD) represents the 2-loop �nite a e�ects and  the 3- and higher-loop
�nite a e�ects. Here � = g23=(�mT ) is the expansion parameter of the 3d theory. The
�nite scaling behaviour of the function f is quite complicated due to the presence of
two di�erent mass scales, mT and mD, which have di�erent dependence on the scalar

mass m3. We notice, however, that if the vev of the Higgs �eld is large enough, then
mT ' mD, and the function f essentially depends on one variable only. In the following
we used the constraint v(T )=T > 3:6, which ensures that mT ' mD with an accuracy
of � 10%. In fact, this condition, being a bit arbitrary, has a weak inuence on the
parameter � extracted from MC simulations. A further simpli�cation comes about

when we notice that for these values of v=T the loop expansion parameter is quite
small, � � 0:1, and we neglect the 3- and higher-loop �nite a e�ects.
In general, there are three possibilities:

(i) The lattice spacing is so small that �nite a e�ects are not essential. Then the dif-
ference between the lattice result and the 2-loop expression is related to the amplitude

of the higher-order corrections to the continuum scalar condensate,

�2 = � 8

g23
�h�y�i; (145)

so that the function �2 depends on the variable g23=mT = 2gT=� only. It must go to

zero for gT=� ! 0. The value of � can be found from this requirement. This type of
behaviour is expected for a su�ciently small parameter amT , measuring the magnitude

of �nite a e�ects.
(ii) Higher-order corrections are so small that their e�ects on the scalar condensate

are negligible. Then the function �2 depends on the variable amT only and must go

to 0 when amT=2 = �=(gT�G) ! 0. The value of � follows from this requirement.
One expects to enter this regime when the expansion parameter � = g23=(�mT ) is small

enough.
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(iii) In the most general case one can neglect neither higher- order nor �nite a correc-

tions. Then the function �2 depends essentially on two variables, amT and g23=mT .

We shall study the most general case. So, we need some expression for the �nite a

e�ects described by f(amT ) and an ansatz for higher-order corrections to the scalar

condensate. The function f(x) can be expanded in a power series in x, starting with a

linear term:

f(x) = Ax+Bx2 + :::: (146)

The linear term appears in the computation of the sunset diagram and the �gure-of-

eight diagram on the lattice (see Appendix A). Moreover, from a computation of the

�gure-of-eight graph we know that the (am)2 corrections come with a large coe�cient,

of the order of the coe�cient in front of am. Therefore, in the analysis of the 2-loop

�nite a e�ects it may not be su�cient to consider the linear term only. So, we will

keep two terms in the expansion of f(x).

Simultaneously, we will use the following expression for the function �h�y�i account-
ing for the 3- and 4- loop contributions:

�h�y�i = � g23
8�3

g43
(4�)3mT

( ~� + ~
g23

4�mT

); (147)

where ~� and ~ are some unknown parameters.
To summarize, the \theoretical" prediction for hR2

Li contains �ve numbers (�, A;B,
and ~� and ~) which we want to determine by comparing the prediction with lattice
MC data.
The parameters of the lattice action (83) are �xed as follows. We choose �G =

12; 20; 24; 32; 40, thus �xing a (since g = 2=3) and mH = 80 GeV �xing �. The A0

couplings are �xed using eqs.(88,90) and eq.(92) with f2D = P2D = 0. The system
then is simulated for various values of �H (�R is �xed by eq.(87)) for lattice sizes
N = 12; 16; 24; 32; 40; 48. An example of distributions in R2

L for �G = 12, mH = 80
GeV and N = 24 is shown in Fig. 4. They show a single peak deep in the broken

phase, which develops into a 2-peak structure at the critical value �Hc. For each peak
the value of hR2

Li with error is computed.
In Fig. 5 we present � as a function of �=(gT�G) = amT=2 for the best �t set of

parameters for the Higgs mass mH = 80 GeV. The e�ect of variation of the di�erent

parameters of the �t is roughly as follows: the change of ~� and ~ changes the deviation

of the points corresponding to di�erent �G from the single curve, parameters A and B
�x the form of that curve, while the change in � moves the curve up or down. The

�tted parameters are:

� = 2:18(6); A = 5:09(25); B = �3:40(23); ~� = �162(22); (148)

the parameter ~ characterizing the 4-loop contribution to the e�ective potential cannot
be determined to any good accuracy by this �t; the numbers given above are stable

with respect to variation of ~ within the limits �700 < ~ < 700. The quality of the �t
is quite good, �2 = 38:9=40. In the computation of the continuum scalar condensate
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we took �3 = 1:6mT , the value for which 2-loop corrections to the e�ective potential

are minimized in the vicinity of the minimum.

The coe�cient � must be independent of the Higgs mass. To check this, we performed

analogous simulations for a di�erent Higgs mass, mH = 160 GeV, with the following

result (�G = 20; 32):

� = 2:44(29); A = 0:86(30); B = 0:67(19); ~� = �317(84); (149)

with �2 = 11=9. Again, the parameter ~ remains undetermined. One can see that the

values of all the parameters besides � changed a lot, while � remains constant within

error bars. The value of �3, minimizing the 2-loop contribution for this value of the

Higgs mass, is �3 = 0:39mT .

To check the stability of the result with respect to the constraint v=T > 3:6 we made

a corresponding �t including the simulations with v=T ' 1. As expected, the quality of

the �t is worse than previously15 (the function f for small v=T depends essentially on

two variables rather than one), but the �t parameters are consistent with the numbers
given above, i.e.

� = 2:17(4); A = 5:10(18); B = �3:43(18); ~� = �151(12); ~ = �98(83):
(150)

In this case the parameter ~ is also determined.
It is instructive to compare the �nite scaling contributions to �, which are deter-

mined by this �t through the coe�cients A and B with a typical 2-loop contribution
� f2m

16�2
4

�3g
2

3

� 1 for mH = 80 GeV. These corrections are of the order of the 2-loop

continuum contribution already at amT � 0:5.
The knowledge of the parameter ~� allows one to get an idea of the magnitude of

the 3-loop corrections to the e�ective potential, at least at su�ciently large �, so that
mT � mD. We parametrize the 3-loop corrections in this region as

V3 =
�

(4�)3
g43mT + V

sing
3 ; (151)

where V sing
3 is the piece of the 3-loop potential, which is singular in the limit m2 ! 0.

It can be found from the equations of subsection 6.1, taking into account the condition
that the O(�h3) contribution to the ground state is �nite. We get:

V
sing
3 = � 27

128m2

g43
(4�)3

(2mT +mL +
4�3

g23
m1)

2: (152)

Now, to relate � and ~� we use the relation of the 3-loop contribution to the scalar
condensate h�y�i through the 3-loop e�ective potential given in eq.(72). The di�erence

between � and ~� appears from the existence of simply connected diagrams contributing

to the condensate. We present here only the numerical result of this computation:

~� ' � � 113: (153)

15The �2 for this �t is 67=54 d.o.f, which gives a con�dence level of 0.11.
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This gives for the 3-loop contribution � = �49(22). This number is quite reasonable
and agrees with the expectation that the true loop expansion parameter is about

g2
3

�mT

[2].

We conclude this subsection by an estimate of the systematic uncertainty in the

determination of � due to the poor knowledge of the 2-loop corrections to the Debye

screening mass16. From eq.(I.53) the change of the e�ective scalar mass m2
3 due to the

change of the Debye mass mD and parameter � is

�m2
3 = � g43

16�2
81

16
�� � 3g23�m

2
D

32�mD

: (154)

Using eq.(92) the variation of the Debye mass is

�m2
D = � g43

16�2
(�g +

�3

g23
�g�): (155)

Therefore,

�� =
1

54�

g23
mD

(�g +
�3

g23
�g�): (156)

So, for j�g + �3
g2
3

�g�j < 14 the systematic uncertainty in � is the same as the statistical
error.

8 The theory with the A0 �eld integrated out

In the main part of the paper we considered the 3d theory derived by dimensional
reduction from the full 4d high-temperature one. In addition to the 3d Higgs �eld and
gauge �eld it contains a triplet of scalar �elds A0. The mass of this �eld � gT is larger
than the typical 3d scale � g2T , so that this �eld can be integrated out perturbatively.
This has been done in ref.[2]. The result of this integration is a 3d gauge-Higgs system

with e�ective parameters related to that of the original 3d theory, containing A0. We
refer here to the relations (I.51,I.52,I.53) of [2].
In this section, we establish the constant physics curves for a corresponding 3d lattice

gauge-Higgs system, i.e. we will relate it to the original 4d high-temperature one.

The lattice action is given by (83), where all terms containing A0 are omitted. The

continuum action is given by (I.51). The connection between the lattice couplings �G,
�R and the continuum parameters �g3

2 and ��3 is

�G =
4

�g23

1

a
; (157)

�R =
1

4
��3a�

2
H =

��3

�g23

�2H
�G
: (158)

16There are no sizeable systematic uncertainties associated with the �nal volume e�ects, since in

all cases simulations were done in such a volume that the �nal volume shift of hR2

Li was smaller than

the statistical error.
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In analogy with eq.(97) we write:

m2
H

4T 2
=

1

2
0 +

1

(Ta)2

�
3� 1

�H
+
2�R

�H
� Ta

f01m
8�

�

+(Ta)2
f02m
32�2

log
Ta

2
+ (Ta)2

f02m � cP 0
2m

32�2

�
; (159)

where

0 =  � 3g2mD

16�T
;

f01m =
3

2
�g23 +

��3; (160)

f02m =
51

16
�g43 + 9��3�g

2
3 � 12��23;

P 0
2m =

51

16
�g43�0 + 9��3�g

2
3�� � 12��23~� + f02mc:

Here the parameters �� and ~� are the same as in the theory with the A0 �eld, but �0
is di�erent from �. The value of �0 can be de�ned in MC simulations in precisely the
way we found � in the previous section. We get:

�0 = 1:62(7); A = 2:62(14); B = �2:05(13); ~� = �67(20); (161)

The �t (with �2 = 24=25 d.o.f.) is shown on Fig. 6. We took �3 = 2:37mT for
these computations [2]. The parameter ~ remains undetermined, as in the previous
cases. Now we can, with the use of eqs. (151,152), estimate the amplitude of the
3-loop corrections to the e�ective potential in this theory. In complete analogy with

the previous discussion we obtain

~� = � � 52 (162)

which gives � = �15(20). The error here can certainly be decreased by the increasing
statistics.
In fact, the relation between � and �0 can be found analytically. To this end we

computed the A0 contribution to the e�ective potential in lattice perturbation theory.

The corresponding diagrams are shown in Fig. 7. The di�erence between the MS A0

2-loop contribution and the lattice one is found to be

1

2

g43
16�2

30

16
[log(

6

a�3
) +

8

5
(
�2

4
� �� � +

5

8
�)]

+
g23
16�2

6m2
D[log(

6

a�3
) +

�2

4
� � + �]; (163)

where the number � is related to a 2-loop integral de�ned in Appendix A and computed

to be � = �0:314. This relation, together with (I.53), gives

81

16
� =

51

16
�0 + 3(

�2

4
� �� �) +

15

8
(log

3T

2mD

+
3

10
+ �): (164)
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This establishes the required connection. With the parameter �0 determined above we

can derive an independent estimate of �:

� = 2:03(5): (165)

This value is about 2 standard deviations below that de�ned in eq.(148). The di�erence

between the two numbers may have an only statistical origin. Also, it may come from

the systematic uncertainties associated with the A0 �eld (see the discussion at the end

of the previous section). In particular, if �g +
�3
g2
3

�g� � 15, the discrepancy disappears.

In any case, the 2� uncertainty in the parameter � is 0:12, which gives already 0:3%

accuracy in the determination of the temperature through the lattice parameters. In

absolute units, this means �T ' 0:5 GeV in the vicinity of the phase transition for

mH = 80 GeV.

We conclude this section by noting that the 2-loop computations of the gauge in-

variant condensates in this theory can be extracted from sections 5 and 6 of this paper

by simply dropping the A0 contribution.

9 Conclusion

This paper is a quite technical (but absolutely necessary) step in the study of the

electroweak phase transition with the use of the lattice MC methods in the framework
of 3d e�ective theory. It provides a bridge between the lattice and continuum in terms
of the constant physics curves. These curves are parametrized by 3 pure numbers
(�; �� and ~� and are exact in the continuum limit. In addition, we found a number of
relationships, which are exact in the continuum limit, between lattice and continuum

gauge-invariant observables { condensates. The condensates were computed on the
2-loop level. This gives a possibility to study the convergence of perturbation theory
in the broken phase in the vicinity of the electroweak phase transition.
The authors thank I. Montvay for many helpful discussions on dimensional reduction

and on di�erent aspects of lattice perturbation theory. K.F. is partially supported by a

CEC program (CHRX - CT93 - 0319), K.R. is supported by United States Department

of Energy grant DE-FG02-91ER40661.

A Some 1- and 2-loop computations on the lattice

In this appendix we derive the expressions for the 1-loop tadpole graph and for a
number of 2-loop graphs on the lattice.

A.1 1-loop graphs

Abbreviating the lattice propagator by

d(n1; n2; n3;m) = sin2(�n1=N) + sin2(�n2=N) + sin2(�n3=N) + (am=2)2; (166)
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ni = 1; : : : ; N � 1, we can de�ne the lattice sum corresponding to a tadpole graph as

aI(N;m) =
1

4N3

N�1X
ni=0

1

d(n1; n2; n3;m)
: (167)

In the limit N !1 the sum can be converted into an integral,

aI(1;m) = aI(m) =
1

4�3

Z �

0
d3x

1

sin2 x1 + sin2 x2 + sin2 x3 + (am=2)2

=
1

4

Z
1

0
d�e�

1

4
�(am)2[e�

1

2
�I0(

1

2
�)]

3
; (168)

where I0 is the modi�ed Bessel function. In the continuum limit a! 0,

I(m) =
1

4�a
[�� am� �(am)2 + 0:82�(am)3 +O((am)4))] (169)

with

� =
8

�
(18 + 12

p
2 � 10

p
3� 7

p
6)K((2�

p
3)2(

p
3�

p
2)2) = 3:1759114; (170)

K being the complete elliptic integral of the �rst kind, and � = 0:15281. The values of
� and of the next coe�cient are the results of a numerical computation.
A related function is the 1-loop contribution to the vacuum energy,

a3J(N;m) =
1

N3

N�1X
ni=0

1

2
log[d(n1; n2; n3;m)]: (171)

In the continuum limit J(1;m) = J(m) satis�es 2dJ=dm2 = I(m2) and has the small-a
expansion

J(m) = const +
1

4�a

�
1

2
�m2 � 1

3
am3 � 1

4
�a2m4 +O(a3m5)

�
: (172)

A.2 2-loop graphs

The scalar sunset integral H is given in eq.(I.22). Its lattice analogue is the double

sum

H(N;m1;m2;m3) =
1

64N6

N�1X
ni=0

N�1X
mi=0

[d(n1; n2; n3;m1)]�1 (173)

[d(m1;m2;m3;m2)]�1[d(n1 +m1; n2 +m2; n3 +m3;m3)]�1;

where 0 � ni + mi � N � 1. The N ! 1 lattice limit (N ! 1; a ! 0; Na =
constant) is also given by

HL(m;m;m) = H(1;m;m;m)
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=
1

64�6

Z �

0
d3x d3y

1P
sin2 xi +

1
4
a2m2

1P
sin2 yi +

1
4
a2m2

1P
sin2(xi + yi) +

1
4
a2m2

=
1

8

Z
1

0
d3� exp[�3(1 + 1

2
a2m2)(�1 + �2 + �3)] �

�
�Z 2�

0

dx

2�
e�2 cosxI0(

q
�21 + �23 + 2�1�3 cos x)

�3
(174)

� 1

16�2

�
log

2

am
+
1

2
+ � + �(am) +O((am)2)

�

� 1

16�2

�
log

6

a�3
+ log

�3

3m
+
1

2
+ � + �(am) +O((am)2)

�
:

The constants � ' 0:09 and � ' �0:6 have been estimated by computing the integral

(174) numerically and also by computing the sums for values of N up to 24. Since

the dependence on am=2 is only logarithmic, one has to go down to am=2 � 0:01

to separate the logarithmic and constant terms, and the computation is numerically
demanding.
We �nish this appendix by presenting two non-trivial 2-loop integrals needed for the

computation of the parameter � and for relating � to �0 (the parameter for the theory
with the A0 �eld integrated out). Both come from the SSV type of graphs.
The number � is related to the derivative of the SSV diagram with respect to the

scalar mass and is given by

� =
1

2�4

Z �

2

�
�

2

d3x

Z �

2

�
�

2

d3y

P
i[sin

2 xi sin
2(x+ y)i]

(
P
i sin

2 xi)2(
P
i sin

2(x+ y)i)(
P
i sin

2 yi)
' 1:94: (175)

The number � is related to the derivative of the SSV diagram with respect to the
vector mass and is given by

� =
1

4�4

Z �

2

�
�

2

d3x

Z �

2

�
�

2

d3y

( P
i[sin

2 xi sin
2(x+ y)i]

(
P
i sin

2 xi)(
P
i sin

2(x+ y)i)
�

P
i sin

4 xi

(
P
i sin

2 xi)2

)
1

(
P
i sin

2 yi)2

' �0:314: (176)

B The gauge invariant e�ective potential

A gauge-invariant e�ective potential V (�) has been introduced in [13] by including a

current J coupling to �y�:

exp[�W (J)] =
Z
DAa

iD� exp[�S +
Z
d3xJ�y�] (177)

and by performing the usual transformation from J to �. Thus simply (the three-

volume V3 is not written explicitly)

W (J) = V (v(T );m2
3+ J); (178)
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i.e. the generating functional W (J) is the same as the e�ective potential at its mini-

mum, but computed for m2
3 ! m2

3 + J . The relation between � and J is given by

W 0(J) =
@V (v(T );m2

3+ J)

@m2
3

� h�y�iJ = � (179)

and the gauge-invariant e�ective potential is given by

V (�) = V (v(T );m2
3+ J(�))� J(�)�: (180)

To evaluate the Legendre transformation (180) we write J = J(0)+�hJ(1) (J(2) is not

needed). To leading order in �h, it follows from eqs.(71) and (179) that

J(0) = �m2
3 � 2�3� (181)

so that from eq.(71)

V(0)(�) = V (v(T );m2
3+ J(0)) = m2

3� + �3�
2: (182)

To order �h

J(1) =
�3

2�

�
�m1 +

3g23
8�3

(2 �mT + �mL)

�
; (183)

where now

�m1 =
q
4�3�; �mT =

s
1

2
g23�; �mL =

s
m2
D +

1

2
g23�: (184)

These equations show that the calculation is valid for � > 0 or for m2
3 + J < 0, i.e. in

the broken phase. With these masses, the 2-loop result for the gauge invariant e�ective
potential is

V (� > 0) = m2
3� + �3�

2 � �h

12�
(6 �m3

T + 3 �m3
L + �m3

1) (185)

��h2�3

64�2
�m1[5 �m1 +

3g23
2�3

(2 �mT + �mL)] + �h2V2( �mT ; �mL; �m1;m2 = 0);

where V2 is given in eq.(34).
If � < 0 or m2

3 + J > 0 one has to use the eqs. (73), (74) and (40), which are
appropriate for the symmetric saddle point. Now the leading term in V (v) in eq.(40)

is O(�h) and one obtains

�(J) = � �h

2�

q
m2

3 + J: (186)

The same procedure as before leads to

V (� < 0) =

�
m2

3 �
3�h

8�
g23mD

�
� +

3

4

�
g23 log

�3�h

�4�� +
1

4
g23 + 2�3

�
�2 � 4�2

3�h2
�3; (187)

neglecting a �-independent part depending on mD, log(�3=mD), and the coupling con-

stants. Note the dependence on �h.

Although explicit forms of the gauge-invariant potential have been given here one
has not gained anything of practical use. One is anyway only interested in the physical

ground-state value of h�y�i and this is already given by eqs.(76-78).
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C Distribution of h�y�i in a �nite system

In the course of lattice simulations R2 = 1
V3

R
d3x�y(x)�(x) will be studied in �nite

volume systems and it is of great use to know its distribution dN=dR2 in the continuum,

but in a �nite 3-volume V3. By de�nition we have, in terms of the functional integral

in eq.(38),

dN

dR2
=

Z
D �(R2 � 1

V3

Z
d3x�y(x)�(x))e�S[ ]

=
Z
1

�1

dt

2�

Z
D exp(�S[ ] + itR2 � it

1

V3

Z
d3x�y�)

=
Z
1

�1

dt

2�
expfitR2 � V3V [v(T );m

2
3+ it=V3]g: (188)

The integral over t is computed with the saddle point method: the saddle point ts is

determined by

R2 =
dV [v(T );m2

3+ its=V3]

dm2
3

=
dV [v(T );m2

3]

dm2
3

+ i
ts

V3

d2V [v(T );m2
3]

(dm2
3)

2
+ ::: ; (189)

so that the saddle point is at

its

V3
=
R2 � V 0[m2

3]

V 00[m2
3]

; (190)

where the derivatives always are with respect to m2
3, keeping � = v(T ). Near the

average
hR2i = V 0(m2

3); (191)

ts=V3 is small relative to m2
3 and it is consistent to expand as in eq.(189). For the

distribution one obtains

dN

dR2
=

e�V3V [m
2

3
]q

�2�V 00(m2
3)=V3

exp

�
V3

2V 00(m2
3)
[R2 � V 0(m2

3)]
2

�
: (192)

This is a Gaussian with the average as in eq.(191) and the width �V 00(m2
3)=V3. Note

that V 00(m2
3) < 0: for a simple tree potential near a broken minimum (m2

3 < 0)

the derivatives are V (m2
3) = �m4

3=(4�3); V
0(m2

3) = �m2
3=(2�3); V

00(m2
3) = �1=(2�3).

Eq.(192) shows how the uctuations freeze to zero in the in�nite volume limit.
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(SV) (SSV)

Figure 1: The vacuum 2-loop diagrams used in the computation of ��.

Figure 2: The Higgs self-energy 2-loop diagrams used in the computation of ��.
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Figure 3: The scalar-gauge vertices in lattice perturbation theory.
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Figure 4: The evolution of the distribution of hR2
Li with �H .
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Figure 5: The quantity 2�
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as a function of x = amT=2.

48



0.0 0.2 0.4 0.6 0.8 1.0
x = φ/gTβG

0.0

1.0

2.0

3.0

∆R
2  β

H
β G

/x

βG = 12
βG = 16
βG = 20
βG = 24
βG = 32, 24

3

βG = 32, 16
3

Figure 6: The same as Fig.5, for a theory without A0 �eld.
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Figure 7: The A0 contribution to the e�ective potential.
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