38 research outputs found
Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations
Understanding the response of the ocean to global warming, including the renewal of ocean waters from the surface (ventilation), is important for future climate predictions. Oxygen distributions in the ocean thermocline have proven an effective way to infer changes in ventilation because physical processes (ventilation and circulation) that supply oxygen are thought to be primarily responsible for changes in interior oxygen concentrations. Here, the focus is on the North Pacific thermocline, where some of the world's oceans' largest oxygen variations have been observed. These variations, described as bi-decadal cycles on top of a small declining trend, are strongest on subsurface isopycnals that outcrop into the mixed layer of the northwestern North Pacific in late winter. In this study, surface density time series are reconstructed in this area using observational data only and focusing on the time period from 1982, the first full year of the satellite sea surface temperature record, to 2020. It is found that changes in the annual maximum outcrop area of the densest isopycnals outcropping in the northwestern North Pacific are correlated with interannual oxygen variability observed at Ocean Station P (OSP) downstream at about a 10-year lag. The hypothesis is that ocean ventilation and uptake of oxygen is greatly reduced when the outcrop areas are small and that this signal travels within the North Pacific Current to OSP, with 10Â years being at the higher end of transit times reported in other studies. It is also found that sea surface salinity (SSS) dominates over sea surface temperature (SST) in driving interannual fluctuations in annual maximum surface density in the northwestern North Pacific, highlighting the role that salinity may play in altering ocean ventilation. In contrast, SSS and SST contribute about equally to the long-term declining surface density trends that are superimposed on the interannual cycles.</p
Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC)
© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quinn, P. K., Thompson, E. J., Coffman, D. J., Baidar, S., Bariteau, L., Bates, T. S., Bigorre, S., Brewer, A., de Boer, G., de Szoeke, S. P., Drushka, K., Foltz, G. R., Intrieri, J., Iyer, S., Fairall, C. W., Gaston, C. J., Jansen, F., Johnson, J. E., Krueger, O. O., Marchbanks, R. D., Moran, K. P., Noone, D., Pezoa, S., Pincus, R., Plueddemann, A. J., Poehlker, M. L., Poeschl, U., Melendez, E. Q., Royer, H. M., Szczodrak, M., Thomson, J., Upchurch, L. M., Zhang, C., Zhang, D., & Zuidema, P. Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth System Science Data, 13(4), (2021): 1759-1790, https://doi.org/10.5194/essd-13-1759-2021.The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) took place from 7 January to 11 July 2020 in the tropical North Atlantic between the eastern edge of Barbados and 51ââW, the longitude of the Northwest Tropical Atlantic Station (NTAS) mooring. Measurements were made to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Multiple platforms were deployed during ATOMIC including the NOAA RV Ronald H. Brown (RHB) (7 January to 13 February) and WP-3D Orion (P-3) aircraft (17 January to 10 February), the University of Colorado's Robust Autonomous Aerial Vehicle-Endurant Nimble (RAAVEN) uncrewed aerial system (UAS) (24 January to 15 February), NOAA- and NASA-sponsored Saildrones (12 January to 11 July), and Surface Velocity Program Salinity (SVPS) surface ocean drifters (23 January to 29 April). The RV Ronald H. Brown conducted in situ and remote sensing measurements of oceanic and atmospheric properties with an emphasis on mesoscale oceanicâatmospheric coupling and aerosolâcloud interactions. In addition, the ship served as a launching pad for Wave Gliders, Surface Wave Instrument Floats with Tracking (SWIFTs), and radiosondes. Details of measurements made from the RV Ronald H. Brown, ship-deployed assets, and other platforms closely coordinated with the ship during ATOMIC are provided here. These platforms include Saildrone 1064 and the RAAVEN UAS as well as the Barbados Cloud Observatory (BCO) and Barbados Atmospheric Chemistry Observatory (BACO). Inter-platform comparisons are presented to assess consistency in the data sets. Data sets from the RV Ronald H. Brown and deployed assets have been quality controlled and are publicly available at NOAA's National Centers for Environmental Information (NCEI) data archive (https://www.ncei.noaa.gov/archive/accession/ATOMIC-2020, last access: 2 April 2021). Point-of-contact information and links to individual data sets with digital object identifiers (DOIs) are provided herein.NOAA's Climate Variability and Predictability Program provided funding under NOAA CVP NA19OAR4310379, GC19-301, and GC19-305. The Joint Institute for the Study of the Atmosphere and Ocean (JISAO) supported this study under NOAA cooperative agreement NA15OAR4320063. Additional support was provided by the NOAA's Uncrewed Aircraft Systems (UAS) Program Office, NOAA's Physical Sciences Laboratory, and NOAA AOML's Physical Oceanography Division. The NTAS project is funded by the NOAA's Global Ocean Monitoring and Observing Program (CPO FundRef number 100007298), through the Cooperative Institute for the North Atlantic Region (CINAR) under cooperative agreement NA14OAR4320158
EURECâŽA
The science guiding the EURECâŽA campaign and its measurements is presented. EURECâŽA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic â eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECâŽA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200âkm) and larger (500âkm) scales, roughly 400âh of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10â000 profiles), lower atmosphere (continuous profiling), and along the airâsea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECâŽA explored â from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation â are presented along with an overview of EURECâŽA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
EURECâŽA
The science guiding the EURECâŽA campaign and its measurements is presented. EURECâŽA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic â eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECâŽA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200âkm) and larger (500âkm) scales, roughly 400âh of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10â000 profiles), lower atmosphere (continuous profiling), and along the airâsea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECâŽA explored â from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation â are presented along with an overview of EURECâŽA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement
Subseasonal variations in salinity and barrier-layer thickness in the eastern equatorial Indian Ocean
The barrier layer, the layer between the bottom of the density-defined mixed layer and the isothermal layer in the upper ocean, may play a role in air-sea dynamics. In the present study, data from Argo profiling floats in the tropical Indian Ocean and a mooring at 90°E, 0°N are used to examine subseasonal variations in upper ocean salinity and barrier-layer thickness (BLT) during boreal winter. In the eastern equatorial Indian Ocean, subseasonal variations in BLT are energetic. However, composites used to isolate the Madden-Julian Oscillation (MJO) component of the subseasonal signal reveal that, on average, the MJO anomaly in BLT is negligible despite large swings in both the mixed-layer depth and the isothermal-layer depth. This discrepancy is likely due to (a) noise from other subseasonal processes; and (b) the diversity of individual MJO events: the thickness of the mixed layer and the isothermal layer are sensitive to wind and rain forcing, so even subtle differences in the phasing and strength of MJO-related atmospheric anomalies can produce a very different effect on upper ocean stratification and hence on the thickness of the barrier layer. The effect of the barrier layer on the upper ocean response to MJO forcing is also evaluated. When the barrier layer is thick, entrainment cooling during the MJO is reduced, so the MJO drives a weaker sea surface temperature anomaly. This suggests that modulation of BLT can have significant consequences for the response of the upper ocean to the MJO, and hence, potentially, for feedbacks of the ocean onto the atmosphere on MJO time scales. Key Points MJO excites systematic anomalies in MLD but not BLT Zonal advection dominates MJO salinity anomalies at 90°E, 0°N When the barrier layer is thin, the MJO excites stronger SST anomalies © 2014. American Geophysical Union. All Rights Reserved
Recommended from our members
Subseasonal variations in salinity and barrier-layer thickness in the eastern equatorial Indian Ocean
The barrier layer, the layer between the bottom of the density-defined mixed layer and the isothermal layer in the upper ocean, may play a role in air-sea dynamics. In the present study, data from Argo profiling floats in the tropical Indian Ocean and a mooring at 90°E, 0°N are used to examine subseasonal variations in upper ocean salinity and barrier-layer thickness (BLT) during boreal winter. In the eastern equatorial Indian Ocean, subseasonal variations in BLT are energetic. However, composites used to isolate the Madden-Julian Oscillation (MJO) component of the subseasonal signal reveal that, on average, the MJO anomaly in BLT is negligible despite large swings in both the mixed-layer depth and the isothermal-layer depth. This discrepancy is likely due to (a) noise from other subseasonal processes; and (b) the diversity of individual MJO events: the thickness of the mixed layer and the isothermal layer are sensitive to wind and rain forcing, so even subtle differences in the phasing and strength of MJO-related atmospheric anomalies can produce a very different effect on upper ocean stratification and hence on the thickness of the barrier layer. The effect of the barrier layer on the upper ocean response to MJO forcing is also evaluated. When the barrier layer is thick, entrainment cooling during the MJO is reduced, so the MJO drives a weaker sea surface temperature anomaly. This suggests that modulation of BLT can have significant consequences for the response of the upper ocean to the MJO, and hence, potentially, for feedbacks of the ocean onto the atmosphere on MJO time scales. Key Points MJO excites systematic anomalies in MLD but not BLT Zonal advection dominates MJO salinity anomalies at 90°E, 0°N When the barrier layer is thin, the MJO excites stronger SST anomalies © 2014. American Geophysical Union. All Rights Reserved
The diurnal salinity cycle in the tropics
© 2014. American Geophysical Union. All Rights Reserved. Observations from 35 tropical moorings are used to characterize the diurnal cycle in salinity at 1 m depth. The amplitude of diurnal salinity anomalies is up to 0.01 psu and more typically âŒ0.005 psu. Diurnal variations in precipitation and vertical entrainment appear to be the dominant drivers of diurnal salinity variability, with evaporation also contributing. Areas where these processes are strong are expected to have relatively strong salinity cycles: the eastern Atlantic and Pacific equatorial regions, the southwestern Bay of Bengal, the Amazon outflow region, and the Indo-Pacific warm pool. We hypothesize that salinity anomalies resulting from precipitation and evaporation are initially trapped very near the surface and may not be observed at the 1 m instrument depths until they are mixed downward. As a result, the pattern of diurnal salinity variations is not only dependent on the strength of the forcing terms, but also on the phasing of winds and convective overturning. A comparison of mixed-layer depth computed with hourly and with daily averaged salinity reveals that diurnal salinity variability can have a significant effect on upper ocean stratification, suggesting that representing diurnal salinity variability could potentially improve air-sea interaction in climate models. Comparisons between salinity observations from moorings and from the Aquarius satellite (level 2 version 3.0 data) reveal that the typical difference between ascending-node and descending-node Aquarius salinity is an order of magnitude greater than the observed diurnal salinity anomalies at 1 m depth. Key Points Diurnal salinity throughout the tropics up to 0.01 psu Diurnal entrainment and precipitation drive diurnal salinity Aquarius ascending-descending difference exceeds day-night salinity signa
A parameterization for rain-induced freshwater lenses
http://www.godac.jamstec.go.jp/darwin/cruise/mirai/mr13-03/
Understanding Madden-Julian-Induced sea surface temperature variations in the North Western Australian Basin
The strongest large-scale intraseasonal (30-110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. similar to 0.4 A degrees C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40-50 day timescale within the NWAB, associated with similar to 40 Wm(-2) net heat fluxes (primarily shortwave and latent) and similar to 0.02 Nm(-2) wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (similar to 20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB