266 research outputs found

    Cyclizable matrix pairs over C[x] and a conjecture on Töplitz pencils

    Get PDF
    AbstractThe 22-year-old conjecture is addressed which claims that any reachable matrix pair (A,B) from C[x]n×(n+m) is cyclizable, i.e. allows for F,u over C[x] s.t. (A+BF)kBu, k=0,…,n−1, is a basis for C[y]n. It is shown that for a whole class of pairs the correctness of the conjecture is a consequence of the correctness of a conjecture on certain Töplitz pencils. An algebraic computable test for the validity of the latter is given. Based on these results the validity of the conjecture on cyclizability can be extended up to dimension 5

    Input matters: speed of word recognition in 2-year-olds exposed to multiple accents

    Get PDF
    Although studies investigating language abilities in young children exposed to more than one language have become common, there is still surprisingly little research examining language development in children exposed to more than one accent. Here, we report two looking-while-listening experiments examining the impact of routine home exposure to multiple accents on 2-year-olds’ word recognition abilities. In Experiment 1, we found that monolingual English-learning 24-month-olds who routinely receive exposure to both Canadian English and a non-native variant of English are less efficient in their recognition of familiar words spoken in Canadian English than monolingual English-learning 24-month-olds who hear only Canadian English at home. In Experiment 2, we found that by 34 months of age all children recognize words equally quickly regardless of their accent exposure at home. We conclude that monolingual toddlers in some locations may form a less homogeneous population than past work has assumed, a factor that should be considered when drawing generalizations about language development across different populations

    Controls on zooplankton methane production in the central Baltic Sea

    Get PDF
    Several methanogenic pathways in oxic surface waters were recently discovered, but their relevance in the natural environment is still unknown. Our study examines distinct methane (CH4) enrichments that repeatedly occur below the thermocline during the summer months in the central Baltic Sea. In agreement with previous studies in this region, we discovered differences in the methane distributions between the western and eastern Gotland Basin, pointing to in situ methane production below the thermocline in the latter (concentration of CH4 14.1±6.1&thinsp;nM, δ13C CH4 −62.9&thinsp;‰). Through the use of a high-resolution hydrographic model of the Baltic Sea, we showed that methane below the thermocline can be transported by upwelling events towards the sea surface, thus contributing to the methane flux at the sea–air interface. To quantify zooplankton-associated methane production rates, we developed a sea-going methane stripping-oxidation line to determine methane release rates from copepods grazing on 14C-labelled phytoplankton. We found that (1) methane production increased with the number of copepods, (2) higher methane production rates were measured in incubations with Temora longicornis (125±49&thinsp;fmol&thinsp;methane&thinsp;copepod−1&thinsp;d−1) than in incubations with Acartia spp. (84±19&thinsp;fmol&thinsp;CH4&thinsp;copepod−1&thinsp;d−1) dominated zooplankton communities, and (3) methane was only produced on a Rhodomonas sp. diet, and not on a cyanobacteria diet. Furthermore, copepod-specific methane production rates increased with incubation time. The latter finding suggests that methanogenic substrates for water-dwelling microbes are released by cell disruption during feeding, defecation, or diffusion from fecal pellets. In the field, particularly high methane concentrations coincided with stations showing a high abundance of DMSP/DMSO-rich Dinophyceae. Lipid biomarkers extracted from phytoplankton- and copepod-rich samples revealed that Dinophyceae are a major food source of the T. longicornis dominated zooplankton community, supporting the proposed link between copepod grazing, DMSP/DMSO release, and the build-up of subthermocline methane enrichments in the central Baltic Sea.</p

    Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface

    Get PDF
    The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arctic cloud formation and altering their microphysics, remain largely elusive due to a lack of harmonized concurrent multi-component, multi-site, and multi-season observations. Here, we present a dataset on the overall chemical composition and seasonal variability of the Arctic total particulate matter (with a size cut at 10 mu m, PM10, or without any size cut) at eight observatories representing all Arctic sectors. Our holistic observational approach includes the Russian Arctic, a significant emission source area with less dedicated aerosol monitoring, and extends beyond the more traditionally studied summer period and black carbon/sulfate or fine-mode pollutants. The major airborne Arctic PM components in terms of dry mass are sea salt, secondary (non-sea-salt, nss) sulfate, and organic aerosol (OA), with minor contributions from elemental carbon (EC) and ammonium. We observe substantial spatiotemporal variability in component ratios, such as EC/OA, ammonium/nss-sulfate and OA/nss-sulfate, and fractional contributions to PM. When combined with component-specific back-trajectory analysis to identify marine or terrestrial origins, as well as the companion study by Moschos et al 2022 Nat. Geosci. focusing on OA, the composition analysis provides policy-guiding observational insights into sector-based differences in natural and anthropogenic Arctic aerosol sources. In this regard, we first reveal major source regions of inner-Arctic sea salt, biogenic sulfate, and natural organics, and highlight an underappreciated wintertime source of primary carbonaceous aerosols (EC and OA) in West Siberia, potentially associated with the oil and gas sector. The presented dataset can assist in reducing uncertainties in modelling pan-Arctic aerosol-climate interactions, as the major contributors to yearly aerosol mass can be constrained. These models can then be used to predict the future evolution of individual inner-Arctic atmospheric PM components in light of current and emerging pollution mitigation measures and improved region-specific emission inventories.Peer reviewe

    Policy challenges for the pediatric rheumatology workforce: Part I. Education and economics

    Get PDF
    For children with rheumatic conditions, the available pediatric rheumatology workforce mitigates their access to care. While the subspecialty experiences steady growth, a critical workforce shortage constrains access. This three-part review proposes both national and international interim policy solutions for the multiple causes of the existing unacceptable shortfall. Part I explores the impact of current educational deficits and economic obstacles which constrain appropriate access to care. Proposed policy solutions follow each identified barrier
    corecore