
Linear Algebra and its Applications 389 (2004) 33–42
www.elsevier.com/locate/laa

Cyclizable matrix pairs over C[x]
and a conjecture on Töplitz pencils�

Wiland Schmale a,∗, Pramod K. Sharma b

aInstitut für Mathematik, Fakultät V, Carl von Ossietzky Universität, D-26111 Oldenburg, Germany
bDepartment of Mathematics, DAV-University, Indore, India

Received 20 October 2003; accepted 24 March 2004

Submitted by V. Mehrmann

Abstract

The 22-year-old conjecture is addressed which claims that any reachable matrix pair (A,B)

from C[x]n×(n+m) is cyclizable, i.e. allows for F, u over C[x] s.t. (A + BF)kBu,
k = 0, . . . , n − 1, is a basis for C[y]n. It is shown that for a whole class of pairs the correctness
of the conjecture is a consequence of the correctness of a conjecture on certain Töplitz pencils.
An algebraic computable test for the validity of the latter is given. Based on these results the
validity of the conjecture on cyclizability can be extended up to dimension 5.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Systems over rings; Töplitz pencils; Cyclizability; BSSV-Conjecture

1. Introduction

One of the basic results in early control theory for linear multivariable state space
systems is Heymann’s Lemma [5,6]. It states that the following cyclization property
is true, when R is a field.

Cyclization Property 1.1. Let R be a commutative ring. For all n,m ∈ N+ and all
A ∈ Rn×n, B ∈ Rn×m s.t.
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R(A,B) := [B,AB, . . . , An−1B] is right invertible, (1)

there exists u ∈ Rm, F ∈ Rm×n s.t.

[Bu, (A + BF)Bu, . . . , (A + BF)n−1Bu] is invertible. (2)

In control theory the matrix R(A,B) is called reachability matrix (for the control
process with parameters A,B) and in case (1) is valid, the pair (A,B) is called
reachable.

In case (2) is valid for a specific pair (A,B), this pair is called cyclizable. The
importance of the Cyclization Property in control theory lies in the fact, that it
gives direct access to the so-called pole-shifting theorem. For further historic, control
theoretic and algebraic background we refer to [13].

Rings with cyclization property for fixed n are called FCn-rings (Feedback Cyc-
lization) and rings which are FCn for all n � 1 are called FC-rings according to
[3, p. 115]. The search for FCn-rings was to a great extent stimulated by [3,14]
and the monograph [1]. Many rings are known to have the FC-property. Among the
interesting ones are fields, finite rings, certain power series rings or more generally
speaking rings with finitely many maximal ideals (see e.g. [1]), also 1-stable rings
including standard rings of analytic functions (see [9] for references). Further ex-
amples can be found in [2, Theorem 5]. Already in [3, p. 124] it is demonstrated that
the ring Z of integers and the ring R[y] of real polynomials are not FC2-rings even
and conjectured that nevertheless C[y] is an FC-ring (BSSV-conjecture).

The BSSV conjecture has been confirmed for n = 2 in [3], n = 3 in [8] and n =
4 in [9]. In [10,12] the conjecture could be confirmed for arbitrary n but with the
exception of two specific families of “exceptional” pairs. One can deduce from the
results that C[y] is “at least” generically an FCn-ring for n � 1.

In this article we will show in Section 3 for one of the two exceptional families
that the cyclization property holds if and only if the following conjecture for a certain
class of Töplitz pencils is true.

Töplitz-Pencil-conjecture 1.2 (TP-conjecture). For any n � 4 and any nonzero com-
plex numbers c1, . . . , cn−1 and for an indeterminate x over C, if

Mn,0 =




c2 c1 x 0 · · · 0
...

... 0
. . . x

cn−2 cn−3 c1
cn−1 cn−2 · · · c2




(3)

does not have full rank, then the first two columns are linearly dependent (the con-
verse being trivial ).
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By this result it is no longer necessary to perform tedious feedback constructions
in order to confirm the cyclization property. It can shift the effort to a problem in a
well-established classical mathematical surrounding [11].

We will give the easy proof for n = 5 and develop an algebraic test which allows
to confirm the conjecture for arbitrary n. With this test the TP-conjecture has been
confirmed up to n = 7 so far. See end of Section 3 for more details.

In Section 4 the cyclization property is proved for all remaining exceptional pairs
of dimension 5. Together with the TP-conjecture for n = 5 this establishes the BSSV-
conjecture for n = 5.

2. Mathematical background

The arguments to follow in Sections 3 and 4 will be founded on the following
result which can be extracted from [10, pp. 552–555].

Theorem 2.1. Let

C(f ) =




0 · · · 0
1 0
...

. . . 0
0 · · · 1 0
0 · · · 0 f 0


 ∈ C[y]n×n,

(4)

D(h1, . . . , hn−2, g) =




1 0
0 h1
...

0 hn−2
0 g


 ∈ C[y]n×2.

C[y] is an FC-ring if and only if for all n � 2 and all nonconstant and coprime
a, b ∈ C[y] and all c1, . . . , cn−2 ∈ C[y] one can find v1, . . . , vn−2, u ∈ C[y] and
Q ∈ C[y]2×2 with detQ = 1 s.t.

detR (C(a),D(c1, . . . , cn−2, b)) diag(Q, . . . ,Q)t

×R (C(1),D(v1, . . . , vn−2, u)) = 1. (5)

We call this a “symmetric approach to FC”. Recall the definition of R from (1).
Despite the transparent structure of Eq. (5) the number of terms still “explodes” with
growing n.
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Note that for n = 1 the cyclization property is trivially true, for n = 2 it has been
proved in [3] and for n = 3 in [8]. From a control point of view it makes sense to try
cyclization assuming

v1 = · · · = vn−3 = 0. (6)

In this case the equation in (5) has been solved in [9] for n = 4. These equations—
still assuming (6)—can be expanded for n � 5 as follows (see also [10, p. 555])

a qn
11 + du u + dv v + dvv v2 = 1 , (7)

where

du = (−1)n−2 det[B,ABq(1), . . . , An−2Bq(1)],
dv = 2(−1)n−3 det[B,ABq(1), . . . , An−3Bq(1), An−1Bq(1)],
dvv = − det[B,AB,A2Bq(1), . . . , An−3Bq(1)],


 (8)

and where A = C(a), B = D(c1, c2, . . . , cn−2, b), Q = [q(1), q(2)] =
[
q11 q12
q21 q22

]
.

The following results have been obtained so far:

Theorem 2.2 [10]. If dvv /= 0 (as a polynomial in q11, q21) and if

a has a simple prime divisor not dividing c1, (9)

solutions to (5) or (7) can be constructed for arbitrary n.

Theorem 2.3 [12]. If for 1 � j � n − 3 one has

bj cn−2−j = aj c
j+1
n−2, (10)

then (5) (or equivalently (7)) is solvable.

It is easily checked that under condition (10) one has dvv = 0 as a polynomial in
q11, q21, the case excluded in Theorem 2.2.

The converse, that dvv = 0 implies relations (10), is true for n = 4 and will be
proved later for n = 5. For n = 6 the converse may be wrong if some of the ci are
zero. See [12, p. 3] for an example. Fortunately in proving the FCn-property there is
no loss in assuming

c1 /= 0, . . . , cn−2 /= 0, a /= 0, b /= 0 (11)

(apply e.g. Proposition 3.8 in [12]).
Thus the question arises whether (11) and dvv = 0 imply (10). This will be in-

vestigated in the following section.
Conditions (9) and (10) describe the two remaining (and intersecting) families of

pairs, for which the cyclization property has not yet been proved and which have
been mentioned in the introduction.
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3. Consequences of dvv = 0 and the TP-conjecture

Throughout we assume c1, . . . , cn−2, a, b, q11, q21 to be nonzero polynomials in
C[y]. From (8), putting cn−1 := b

a
, x = q11

q21
one derives over C(y):

Observation 3.1. dvv=0 as polynomial in q11, q21 over C[y] if and only if detMn=
0 as a polynomial in x over C(y), where

Mn =




c2 c1 x 0
. . .

...
. . . x

c1
cn−1 cn−2 c2




(12)

is a Töplitz pencil. Note that here the ck are polynomials from C[y].

We are now ready to establish a link between the TP-conjecture and the case
where dvv = 0.

Proposition 3.2. Let n � 4.
(a) The following statements are equivalent:

(i) for all nonzero c1, . . . , cn−1 ∈ C[y] (or C(y)) and if detMn = 0, then the
first two columns of Mn are dependent over C[y] (or C(y)).

(ii) The TP-conjecture is true for n.

(b) If the TP-conjecture is correct for n, then for any system of dimension n of type
(4), (6), (11) and with dvv = 0 Eq. (5) (or equivalently (7)) is solvable.

Proof. (a) The implication (i) ⇒ (ii) is obvious. For the converse let us assume
(ii) and detMn = 0. Let P be the finite set of potential poles and zeros of the ci ,
then for any ξ ∈ C\P inserted for y one obtains det(Mn(ξ)) = 0. Then (ii) gives the
dependence of the first two columns of Mn(ξ) over C. Since the ci are determined
by finitely many points, dependence must be valid over C[y] (or C(y)).

(b) Let the TP-conjecture be correct for n and let us consider a pair of type (4),
(6) and (11) such that dvv = 0. Then by Observation 3.1 we must have detMn = 0.
But then by (a) the first two columns of Mn are dependent. Since (11) is assumed,
this is equivalent to

c1

c2
= c2

c3
= · · · = cn−2

cn−1
(13)

and the latter will be shown to be equivalent to

cn−3

cn−2
= cn−2

cn−1
,
cn−4

cn−2
=

(
cn−2

cn−1

)2

, . . . ,
c1

cn−2
=

(
cn−2

cn−1

)n−3

. (14)

Note that (14) is nothing else than (10), when replacing cn−1 by b
a

.
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Thus by Theorem 2.3 one obtains cyclizability and it remains to verify the equi-
valence of (13) and (14). Given (13) one has for 2 � k � n − 3,

cn−2−k

cn−2
= cn−3

cn−2

cn−4

cn−3
· · · cn−2−k

cn−2−(k−1)
=

(
cn−2

cn−1

)k

(15)

and on the other hand, assuming (14) and dividing (15) for k by (15) for k − 1, we
are lead to (13). �

As an example we give the easy proof of the TP-conjecture for n = 5, a result
applied in the following section.

Proof of the TP-conjecture for n = 5. Let M5,0 be as in (3), then

detM5,0 = (
c3

2 − c2c4
)
x + (

c2
3 − 2c1c2c3 + c4c1

2).
If detM5,0 = 0 in C[x], then c4 = c3

2

c2
. Inserted into the constant term this gives

1
c2
(c2

2 − c1c3)
2 = 0. Thus two of the 2 × 2-minors of the first columns of M5,0

vanish, which means, that these two columns are linearly dependent. �

We also have at hand a (considerably more involved) proof for n = 6. No proof
is known so far for n = 7.

Nevertheless it was possible to confirm the truth of the TP-conjecture for n = 7
by the following computable algebraic test, see below for details.

To derive the test, we replace ci by zi in the matrix Mn,0 for 1 � i � n − 1 and
consider the new matrix Mn(z) as a matrix over the polynomial ring C[z1, . . . , zn−1,

x] with independent variables. Apparently detMn(z) has degree n − 4 as a polyno-
mial in x. Assume therefore

detMn(z) = fn−4x
n−4 + · · · + f1x + f0.

Let

rij = det

[
zi+1 zi
zj+1 zj

]
for 1 � i < j � n − 2

be the 2 × 2-minors of the first two columns of Mn(z). Let furthermore S=C[z0, . . . ,

zn−1] be a polynomial ring with additional variable z0 and put

I = 〈
f0, . . . , fn−4, 1 − z0 · · · zn−1

〉
S
,

J = 〈{rij : 1 � i < j � n − 2}〉
S
,

and let V(I ),V(J ) be the corresponding varieties in Cn.
Now the TP-conjecture is equivalent to the conjecture

V(I ) ⊆ V(J ). (16)

The converse inclusion is trivial.



W. Schmale, P.K. Sharma / Linear Algebra and its Applications 389 (2004) 33–42 39

Note that the equation 1 − z0 · · · zn−1 is included because of the requirement in
1.1 that all ci /= 0 and also that linear dependence of the first two columns of Mn,0
is equivalent to the vanishing of the determinants[

ci+1 ci
cj+1 cj

]
for 1 � i < j � n − 2.

Note also that because of Hilbert’s Nullstellensatz (16) is equivalent to saying J ⊆√
I .

Test for the TP-conjecture 3.3. Let z be an additional variable. Compute bases for
the test-ideals Tk = 〈I, 1 − zr1k〉S[z] for 2 � k � n − 2. If all n − 3 bases contain
a constant, then (16) and thus also the TP-conjecture are true.

Proof. If Tk has a constant in its basis, then V(Tk) = ∅ in Cn+1. This means, that

no solution
(

1
c1···cn−1

, c1, . . . , cn−1

)
from V(I ) can be extended to one in V(Tk).

If there exist a solution in V(I ) s.t. r1k(c1, c2, ck, ck+1) /= 0, then(
1

c1 · · · cn−1
, c1, . . . , cn−1,

1

r1k(c1, c2, ck, dk−1)

)
∈ V(Tk),

a contradiction. This argument applied for 2 � k � n − 2 proves V(I ) ⊆ V
(r12, . . . , r1n−2). Since J = 〈r12, . . . , r1n−2〉S (see e.g.: [15, Example 1.4]) this
proves (17). �

Based on the preceding algebraic test the TP-conjecture could be verified up to
n = 7 with Maple 9 on a PC under Windows-XP. Since for n = 7 computing time
with appropriately weighted monomial orders for the test-ideals the computing times
became long (>5 minutes), the results have been confirmed with the help of Singular
2-3-0 [7] on the same PC-installation (<2 seconds). For n = 8 only the first test-ideal
could be checked successfully, whereas for the second one with Singular 2-3-0 after
hours there was still no result. The limit n = 7 could not be broken even on a Pentium
PC, 1 GB RAM, 2.4 GigaHertz under Linux.

4. C[y] is an FC5-ring

Since the TP-conjecture can be proved for n = 5 the case dvv = 0 is completely
covered. When dvv /= 0, then the condition (9) is required in [10] to guarantee that
du, dv, dvv do not have certain common transcendental zeros to be defined below.
We will explain this now and show how to avoid such zeros. Once this is achieved
(7) can constructively be solved exactly as in [10, p. 557 ctd.].
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For n = 5 the polynomials are as follows:

du = q11
3b + ( − 2ac1c3 − ac2

2
)
q11

2q21 + 3q11q21
2ac1

2c2 − q21
3ac1

4,

dv = 2aq11
(
c3q11

2 − 2c2q21c1q11 + c1
3q21

2
)
,

dvv = (
c3

2a − c2b
)
q11 + (

c1
2b − 2c1c2ac3 + ac2

3
)
q21.



(17)

The construction of a solution q11, q21, u, v ∈ C[y] for (7) proceeds as follows. Let
g be the normed gcd of all coefficients of du, dv, dvv considered as polynomials in
q11, q22 and put

gdu = du, gdv = dv, gdvv = dvv. (18)

Since b is always a coefficient of du and since a, b are coprime, automatically
gcd(a, g) = 1 and therefore (see [8]) one can find q11, λ ∈ C[y] s.t.

aq11
5 + gλ = 1. (19)

Moreover, q11 can be chosen to be coprime to any prescribed polynomial and if
gcd(q11, a) = 1 then du is not the zero polynomial independently of q21. By these
facts it is sufficient to solve the equation

duu + dvv + dvvv
2 = λ

locally at zeros of du if possible and later lift the results. This is only feasible if there
are no common zeros of du, dv, dvv which might not be a zero of λ at the same time.

We now choose q21 := t ∈ C to be a constant polynomial and t to be transcend-
ental over the subfield Z of C which is generated by the coefficients of a, b, c1, c2, c3,

q11. We also choose q11 to be coprime to the coefficients of du, dv, dvv as polyno-
mials in q11, q21 and to a. Automatically q11, q21 are coprime in C[y]. Suppose y0
is a common zero of du, dv, dvv . There are two cases:

Case 1. y0 is algebraic over Z. Then q11(y0) /= 0, otherwise by du(y0) = 0 one
would have a(y0)c1(y0)

4 = 0. But a, c1, q11 are coprime. Since t is transcendental
over Z and q11(y0) /= 0, all coefficients of du, dv, dvv as polynomials in q11, q21
must vanish, which is impossible by the choice of g.

Case 2. y0 is transcendental over Z. Note that y0 is always algebraic over Z(t). It
is not obvious whether such zeros are possible at all, but we will show now how to
avoid this case by manipulating the matrix pair.

Lemma 4.1. Given A = C(a), B = D(c1, c2, c3, b) from (4), then there are unim-
odular matrices P ∈ C[y]5×5, Q ∈ C[y]2×2 and a matrix F ∈ C[y]2×5 such that

P(A + BF)P−1 = Ã and PBQ = B̃, (20)
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where Ã = C(̃a) and B̃ = D(̃c1, c̃2, c̃3, b̃) with

c̃1 = c3
3ϕ2 + 2c2c3ϕ + c1, c̃2 = ϕc3

2 + c2,

(21)
c̃3 = c3, b̃ = b, ã = a + bϕ

and where ϕ ∈ C[y] can be chosen arbitrarily.

Proof. The following matrices do the job and ϕ ∈ C[y] can be chosen freely:

P =




1 ϕc3 ϕ2c3
2 + ϕc2 ϕc3(ϕ

2c3
2 + ϕc2) + ϕ2c2c3 + ϕc1 0

0 1 ϕc3 ϕ2c3
2 + ϕc2 0

0 0 1 ϕc3 0
0 0 0 1 0
0 0 0 0 1


 ,

F =
[−ϕc3 −ϕ2c3

2 − ϕc2 −ϕ3c3
3 − 2ϕ2c2c3 − ϕc1 F14 0

0 0 0 ϕ 0

]
,

where

F14 = −ϕ4c3
4 − 3ϕ3c2c3

2 + (−2c3c1 − c2
2)ϕ2,

Q =
[

1 −c3
4ϕ3 − 3c3

2c2ϕ
2 − (2c3c1 + c2

2)ϕ

0 1

]
. �

Transformations of the type (20) for general matrix pairs (A,B) of fixed dimen-
sion form the so-called feeback group [3, p. 116]. In our situation we want the
transformations to maintain the special structure of (A,B). Such transformations
have been used systematically for the first time in [4] and later in [10]. In [12] explicit
formulae are derived for the entries in Lemma 4.1 and arbitrary n.

It is a well-known fact that a pair (A,B) is cyclizable if and only if any pair
obtained from (A,B) by operations of the feedback group is cyclizable. Therefore
later on we examine du, dv, dvv for the new polynomials c̃1, c̃2, c̃3, ã, b̃ and choose
ϕ appropriately.

Consider now the expression

dnew = 2q11du + c1q21dv

= 2q11
4b − 2q11

3q21ac1c3 − 2q11
3q21ac2

2 + 2q11
2q21

2ac1
2c2

which results from (17) and is of degree 2 in q21 = t . If y0 is a common zero of
du, dv, dvv , then also dnew(y0) = 0. If y0 is transcendental over Z, then this quadratic
equation in q21 = t is nontrivial, since q11, a, b, c1, c2 /= 0. Its discriminant is(

c3
2c1

2 + 2c3c1c2
2 + c2

4)a2 − 4c2c1
2ab (22)

and t is algebraic over Z(y0). Inserting the new polynomials from Lemma 4.1 into
(22) gives a new discriminant whose leading ϕ-term is
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4bc3
6(ac3

2 − bc2
)
ϕ5 (23)

if the coefficient of ϕ5 is nonzero. Assume ac3
2 − c2b = 0, then this equality is

valid in C[x], since y0 is transcendental over Z and c1, c2, c3, a, b are all nonzero.
But then also the coefficients of q21 in dvv must be the zero polynomial (see (17)),
which means dvv = 0, contradicting our assumption.

This shows that by suitable choice of the degree of ϕ one can make the degree of
the discriminant uneven. We now choose such a ϕ with coefficients from Z. Then t

cannot be from Z(y0) contradicting the linear equation dvv(y0) = 0.
Altogether we have shown that we can choose the pair (A,B) via the feedback

group s.t. Case 2 also cannot occur.
Now (7) can be solved along the lines in [10] and the pair (A,B) becomes

cyclizable also when dvv /= 0. As a consequence C[y] is an FC5-ring.
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