11 research outputs found

    Perfluorophenyl azide functionalization of electrospun poly(para‐dioxanone)

    Get PDF
    Strategies to surface‐functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para‐dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half‐life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N‐hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier‐transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N‐hydroxysuccinimide esters on the surface of a PFPA‐functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio‐)functionalization of PPDO scaffolds

    Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: a molecular, cellular and behavioral analysis

    Get PDF
    The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of debilitating conditions which differentially affect men and women in their prevalence and nature, including schizophrenia, attention/deficit hyperactivity disorder, autism spectrum disorders, anxiety, depression and addiction

    A noninterventional study to monitor patients with diabetic macular oedema starting treatment with ranibizumab (POLARIS)

    No full text
    Purpose: Antivascular endothelial growth factor agents are increasingly used in diabetic macular oedema (DME); however, there are few studies exploring their use in DME in real-world settings. Methods: POLARIS was a noninterventional, multicentre study to monitor 12-month outcomes in patients starting ranibizumab treatment in routine practices. The primary outcome was mean change in visual acuity (VA) from baseline to month 12 (last observation carried forward approach). Other outcomes included mean change in central retinal thickness (CRT) and resource utilization. Visual acuity (VA) outcomes were also stratified by country, baseline visual acuity score (VAS), sex, age and injection frequency. Results: Outcomes were analysed from all treated patients (n = 804) and from first-year completers (patients who had a visual acuity assessment at 12 months; n = 568). The mean (SD) baseline VAS was 59.4 (15.9) letters, and the mean change in visual acuity was 4.4 letters (95% confidence interval: 3.3–5.4) at month 12 (study eye; first-year completers). The mean number of injections (study eye) was 4.9, and the mean number of all visits (any eye) was 10 (58% were injection visits) over 12 months (first-year completers). The mean (SD) baseline CRT was 410.6 (128.8) ÎŒm, and the mean change in CRT was −115.2 Όm at month 12 (study eye; first-year completers). Visual acuity (VA) outcomes were generally comparable across most countries and subgroups and were greatest in patients with the lowest baseline VAS (≀60 letters). Conclusion: POLARIS showed that real-world outcomes in DME patients starting treatment with ranibizumab were lower than those observed in clinical studies, in spite of extensive monitoring.</p
    corecore