417 research outputs found

    Diagnostic challenges within the Bacillus cereus-group: finding the beast without teeth

    Get PDF
    The Bacillus cereus-group (B. cereus sensu lato) includes common, usually avirulent species, often considered contaminants of patient samples in routine microbiological diagnostics, as well as the highly virulent B. anthracis. Here we describe 16 isolates from 15 patients, identified as B. cereus-group using a MALDI-TOF MS standard database. Whole genome sequencing (WGS) analysis identified five of the isolates as B. anthracis species not carrying the typical virulence plasmids pXO1 and pXO2, four isolates as B. paranthracis, three as B. cereus sensu stricto, two as B. thuringiensis, one as B. mobilis, and one isolate represents a previously undefined species of Bacillus (B. basilensis sp. nov.). More detailed analysis using alternative MALDI-TOF MS databases, biochemical phenotyping, and diagnostic PCRs, gave further conflicting species results. These cases highlight the difficulties in identifying avirulent B. anthracis within the B. cereus-group using standard methods. WGS and alternative MALDI-TOF MS databases offer more accurate species identification, but so far are not routinely applied. We discuss the diagnostic resolution and discrepancies of various identification methods

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]

    Policy Issues in NEG Models: Established Results and Open Questions

    Get PDF
    This paper provides a non-technical overview of NEG models dealing with policy issues. Considered policy measures include alternative categories of public expenditure, international tax competition, unilateral actions of protection/liberalisation, and trade agreements. The implications of public intervention in two-region NEG models are discussed by unfolding the impact of policy measures on agglomeration/dispersion forces. Results are described in contrast with those obtained in standard non-NEG theoretical models. The high degree of abstraction limits the applicability of NEG models to real world policy issues. We discuss in some detail two extensions of NEG models to reduce this applicability gap: the cases of multi-regional frameworks and firm heterogeneity

    Are men’s perceptions of sexually dimorphic vocal characteristics related to their testosterone levels?

    Get PDF
    Feminine physical characteristics in women are positively correlated with markers of their mate quality. Previous research on men’s judgments of women’s facial attractiveness suggests that men show stronger preferences for feminine characteristics in women’s faces when their own testosterone levels are relatively high. Such results could reflect stronger preferences for high quality mates when mating motivation is strong and/or following success in male-male competition. Given these findings, the current study investigated whether a similar effect of testosterone occurs for men’s preferences for feminine characteristics in women’s voices. Men’s preferences for feminized versus masculinized versions of women’s and men’s voices were assessed in five weekly test sessions and saliva samples were collected in each test session. Analyses showed no relationship between men’s voice preferences and their testosterone levels. Men’s tendency to perceive masculinized men’s and women’s voices as more dominant was also unrelated to their testosterone levels. Together, the results of the current study suggest that testosterone-linked changes in responses to sexually dimorphic characteristics previously reported for men's perceptions of faces do not occur for men's perceptions of voices

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Mechanism of Disruption of the Amt-GlnK Complex by PII-Mediated Sensing of 2-Oxoglutarate

    Get PDF
    GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized PII proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins

    In Situ Identification of Plant-Invasive Bacteria with MALDI-TOF Mass Spectrometry

    Get PDF
    Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues

    Winning Fights Induces Hyperaggression via the Action of the Biogenic Amine Octopamine in Crickets

    Get PDF
    Winning an agonistic interaction against a conspecific is known to heighten aggressiveness, but the underlying events and mechanism are poorly understood. We quantified the effect of experiencing successive wins on aggression in adult male crickets (Gryllus bimaculatus) by staging knockout tournaments and investigated its dependence on biogenic amines by treatment with amine receptor antagonists. For an inter-fight interval of 5 min, fights between winners escalated to higher levels of aggression and lasted significantly longer than the preceding round. This winner effect is transient, and no longer evident for an inter-fight interval of 20 min, indicating that it does not result from selecting individuals that were hyper-aggressive from the outset. A winner effect was also evident in crickets that experienced wins without physical exertion, or that engaged in fights that were interrupted before a win was experienced. Finally, the winner effect was abolished by prior treatment with epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, nor by yohimbine, an insect tyramine receptor blocker nor by fluphenazine an insect dopamine-receptor blocker. Taken together our study in the cricket indicates that the physical exertion of fighting, together with some rewarding aspect of the actual winning experience, leads to a transient increase in aggressive motivation via activation of the octopaminergic system, the invertebrate equivalent to the adrenergic system of vertebrates

    Neuroarchitecture of Aminergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster

    Get PDF
    Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides
    corecore