81 research outputs found

    β-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion

    Get PDF
    When a sperm and an oocyte unite upon fertilization, their cell membranes adhere and fuse, but little is known about the factors regulating sperm-oocyte adhesion. Here we explored the role of β-catenin in sperm-oocyte adhesion. Biochemical analysis revealed that E-cadherin and β-catenin formed a complex in oocytes and also in sperm. Sperm-oocyte adhesion was impaired when β-catenin-deficient oocytes were inseminated with sperm. Furthermore, expression of β-catenin decreased from the sperm head and the site of an oocyte to which a sperm adheres after completion of sperm-oocyte adhesion. UBE1-41, an inhibitor of ubiquitin-activating enzyme 1, inhibited the degradation of β-catenin, and reduced the fusing ability of wild-type (but not β-catenin-deficient) oocytes. These results indicate that β-catenin is not only involved in membrane adhesion, but also in the transition to membrane fusion upon fertilization

    Identical NR5A1 Missense Mutations in Two Unrelated 46,XX Individuals with Testicular Tissues

    Get PDF
    The role of monogenic mutations in the development of 46,XX testicular/ovotesticular disorders of sex development (DSD) remains speculative. Although mutations in NR5A1 are known to cause 46,XY gonadal dysgenesis and 46,XX ovarian insufficiency, such mutations have not been implicated in testicular development of 46,XX gonads. Here, we identified identical NR5A1 mutations in two unrelated Japanese patients with 46,XX testicular/ovotesticular DSD. The p.Arg92Trp mutation was absent from the clinically normal mothers and from 200 unaffected Japanese individuals. In silico analyses scored p.Arg92Trp as probably pathogenic. In vitro assays demonstrated that compared with wild‐type NR5A1, the mutant protein was less sensitive to NR0B1‐induced suppression on the SOX9 enhancer element. Other sequence variants found in the patients were unlikely to be associated with the phenotype. The results raise the possibility that specific mutations in NR5A1 underlie testicular development in genetic females

    CD9 Tetraspanin Interacts with CD36 on the Surface of Macrophages: A Possible Regulatory Influence on Uptake of Oxidized Low Density Lipoprotein

    Get PDF
    CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL

    Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Get PDF
    BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window

    Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer’

    Get PDF
    BACKGROUND: Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the 'non-reproductive biologist' to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. METHODS: This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. RESULTS: A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. CONCLUSION: With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility

    Quantitative Genetics, Pleiotropy, and Morphological Integration in the Dentition of Papio hamadryas

    Get PDF
    Variation in the mammalian dentition is highly informative of adaptations and evolutionary relationships, and consequently has been the focus of considerable research. Much of the current research exploring the genetic underpinnings of dental variation can trace its roots to Olson and Miller's 1958 book Morphological Integration. These authors explored patterns of correlation in the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of genetic information through which to view the patterns of correlation. Following in the spirit of Olson and Miller's research, we present a quantitative genetic analysis of dental variation in a pedigreed population of baboons. We identify patterns of genetic correlations that provide insight to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence of at least three modules: an incisor module that is genetically independent of the post-canine dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module. We then compare this matrix of genetic correlations to matrices of phenotypic correlations between the same measurements made on museum specimens of another baboon subspecies and the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the matrices from these three primate taxa. From these observations we infer similarity in modularity and hypothesize a common pattern of genetic integration across the dental arcade in the Cercopithecoidea

    Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives

    Full text link

    The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice

    No full text
    Membrane fusion is an essential step in the encounter of two nuclei from sex cells—sperm and egg—in fertilization. However, aside from the involvement of two molecules, CD9 and Izumo, the mechanism of fusion remains unclear. Here, we show that sperm–egg fusion is mediated by vesicles containing CD9 that are released from the egg and interact with sperm. We demonstrate that the CD9−/− eggs, which have a defective sperm-fusing ability, have impaired release of CD9-containing vesicles. We investigate the fusion-facilitating activity of CD9-containing vesicles by examining the fusion of sperm to CD9−/− eggs with the aid of exogenous CD9-containing vesicles. Moreover, we show, by examining the fusion of sperm to CD9−/− eggs, that hamster eggs have a similar fusing ability as mouse eggs. The CD9-containing vesicle release from unfertilized eggs provides insight into the mechanism required for fusion with sperm
    corecore