11 research outputs found

    Pengaruh Kepemimpinan Transformasional dan Komitmen Organisasi terhadap Turnover Intention (Studi pada Hotel Ratu Mayang Garden Pekanbaru)

    Full text link
    This study aims to analyze the effect of transformational leadership and organizational commitment toward turnover intention in Ratu Mayang Garden Hotel Pekanbaru. Transformational leadership as the first variable (X1), Organizational commitment as the second variable (X2), and turnover intention as the third variable (Y). The method in this research is descriptive and quantitative by using program of SPSS 21, where the sample used by 80 employees by census and technique of data collecting through questioner. The result of this analysis using test of validity, reliability test, determination, simple linear regression test, T test and F test so it can be concluded that transformational leadership have significant effect toward turnover intention, organizational commitment have significant effect toward turnover intention. Transformational leadership and organizational commitment have negative effect and significant toward turnover intention in Ratu Mayang Garden Hotel Pekanbaru

    Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients

    Get PDF
    International audienceBackground: Chromosomal microarray analysis (CMA) is currently the most widely adopted clinical test for patients with unexplained intellectual disability (ID), developmental delay (DD), and congenital anomalies. Its use has revealed the capacity to detect copy number variants (CNVs), as well as regions of homozygosity, that, based on their distribution on chromosomes, indicate uniparental disomy or parental consanguinity that is suggestive of an increased probability of recessive disease. Results: We screened 149 Lebanese probands with ID/DD and 99 healthy controls using the Affymetrix Cyto 2.7 M and SNP6.0 arrays. We report all identified CNVs, which we divided into groups. Pathogenic CNVs were identified in 12.1% of the patients. We review the genotype/phenotype correlation in a patient with a 1q44 microdeletion and refine the minimal critical regions responsible for the 10q26 and 16q monosomy syndromes. Several likely causative CNVs were also detected, including new homozygous microdeletions (9p23p24.1, 10q25.2, and 8p23.1) in 3 patients born to consanguineous parents, involving potential candidate genes. However, the clinical interpretation of several other CNVs remains uncertain, including a microdeletion affecting ATRNL1. This CNV of unknown significance was inherited from the patient's unaffected-mother; therefore, additional ethnically matched controls must be screened to obtain enough evidence for classification of this CNV. Conclusion: This study has provided supporting evidence that whole-genome analysis is a powerful method for uncovering chromosomal imbalances, regardless of consanguinity in the parents of patients and despite the challenge presented by analyzing some CNVs

    Insights into SusCD-mediated glycan import by a prominent gut symbiont

    Get PDF
    In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a “pedal bin” transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism

    Esterase LpEst1 from Lactobacillus plantarum: a novel and atypical member of the αβ hydrolase superfamily of enzymes

    Get PDF
    The genome of the lactic acid bacterium Lactobacillus plantarum WCFS1 reveals the presence of a rich repertoire of esterases and lipases highlighting their important role in cellular metabolism. Among them is the carboxylesterase LpEst1 a bacterial enzyme related to the mammalian hormone-sensitive lipase, which is known to play a central role in energy homeostasis. In this study, the crystal structure of LpEst1 has been determined at 2.05 Å resolution; it exhibits an αβ-hydrolase fold, consisting of a central β-sheet surrounded by α-helices, endowed with novel topological features. The structure reveals a dimeric assembly not comparable with any other enzyme from the bacterial hormone-sensitive lipase family, probably echoing the specific structural features of the participating subunits. Biophysical studies including analytical gel filtration and ultracentrifugation support the dimeric nature of LpEst1. Structural and mutational analyses of the substrate-binding pocket and active site together with biochemical studies provided insights for understanding the substrate profile of LpEst1 and suggested for the first time the conserved Asp173, which is adjacent to the nucleophile, as a key element in the stabilization of the loop where the oxyanion hole resides.We thank the ESRF (Grenoble, France) for provision of synchrotron radiation facilities (ID14-4 and ID29 beamlines, respectively). Y.A.,M.E-T., I.A. and A.C-C are recipients of the following fellowships: CSIC-CITMA, JAE Predoc (CSIC), FPU (MEC) and FPU (MEC), respectively.Peer Reviewe

    Understanding the genetic aetiology in patients with XY DSD

    No full text
    Background Disorders of sex development (DSD) consist of a wide range of disorders and are commoner in those with an XY karyotype. In over half of these cases who have a 46,XY karyotype and who are raised as boys, the underlying aetiology remains unclear.<p></p> Areas of agreement Identification of the underlying genetic abnormality may predict long-term outcome. However, genetic abnormalities that are associated with XY DSD manifest themselves with a wide range of phenotype. To understand the aetiology as well as the phenotypic variation, there is a need to harness the advanced genetic technology that is now available.<p></p> Areas of controversy The point at which genetic analysis should be undertaken in the course of investigations is unclear. In addition, there is little agreement on the most effective approach for genetic analysis that will be of clinical benefit to the patient.<p></p> Areas timely for developing research There is a need to understand and improve the clinical utility of genetic analysis in the clinical setting of the patient with a suspected DSD. This will be even more important when parallel gene sequencing identifies variations in multiple genes.<p></p&gt

    Multisite phosphorylation networks as signal processors for Cdk1

    No full text
    The order and timing of cell cycle events is controlled by changing substrate specificity and different activity thresholds of cyclin-dependent kinases (CDK). However, it is not understood how a single protein kinase can trigger hundreds of switches in a sufficiently time-resolved fashion. We show that the cyclin-Cdk1-Cks1-dependent phosphorylation of multisite targets in Saccharomyces cerevisiae is controlled by key substrate parameters including distances between phosphorylation sites, the distribution of serines and threonines as phospho-acceptors, and the positioning of cyclin-docking motifs. The component mediating the key interactions in this process is Cks1, the phospho-adaptor subunit of the cyclin-Cdk1-Cks1 complex. We propose that variation of these parameters within the networks of phosphorylation sites in different targets provides a wide range of possibilities for the differential amplification of Cdk1 signals, providing a mechanism to generate a wide range of thresholds in the cell cycle
    corecore