44 research outputs found

    Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in New Zealand Journal of Geology and Geophysics 54 (2011): 329-339, doi:10.1080/00288306.2011.589860.Multibeam bathymetric surveys east of the South Island of New Zealand present images of submarine volcanoes and pockmarks west of Urry Knolls on the Chatham Rise, and evidence of submarine erosion on the southern margin of the Chatham Rise. Among numerous volcanic cones, diameters of the largest reach ~2000 m, and some stand as high as 400 m above the surrounding seafloor. The tops of most of the volcanic cones are flat, with hints of craters, and some with asymmetric shapes may show flank collapses. There are hints of both northeast-southwest and northwest-southeast alignments of volcanoes, but no associated faulting is apparent. Near and to the west of these volcanoes, huge pockmarks, some more than ~1 km in diameter, disrupt bottom topography. Pockmarks in this region seem to be confined to sea floor shallower than ~1200 m, but we see evidence of deeper pockmarks at water depths of up to 2100 m on profiles crossing the Bounty Trough. The pockmark field on the Chatham Rise seems to be bounded on the south by a trough near 1200 m depth; like others, we presume that contour currents have eroded the margin and created the trough.This research was supported by the National Science Foundation under grants EAR-0409564, EAR-0409609, and EAR-0409835.2012-08-3

    Characterization of a stratigraphically constrained gas hydrate system along the western continental margin of Svalbard from ocean bottom seismometer data

    Get PDF
    The ongoing warming of bottom water in the Arctic region is anticipated to destabilize some of the gas hydrate present in shallow seafloor sediment, potentially causing the release of methane from dissociating hydrate into the ocean and the atmosphere. Ocean-bottom seismometer (OBS) experiments were conducted along the continental margin of western Svalbard to quantify the amount of methane present as hydrate or gas beneath the seabed. P- and S-wave velocities were modeled for five sites along the continental margin, using ray-trace forward modeling. Two southern sites were located in the vicinity of a 30 km long zone where methane gas bubbles escaping from the seafloor were observed during the cruise. The three remaining sites were located along an E-W orientated line in the north of the margin. At the deepest northern site, Vp anomalies indicate the presence of hydrate in the sediment immediately overlying a zone containing free gas up to 100-m thick. The acoustic impedance contrast between the two zones forms a bottom-simulating reflector (BSR) at approximately 195 m below the seabed. The two other sites within the gas hydrate stability zone (GHSZ) do not show the clear presence of a BSR or of gas hydrate. However, anomalously low Vp, indicating the presence of free gas, was modeled for both sites. The hydrate content was estimated from Vp and Vs, using effective-medium theory. At the deepest northern site, modeling suggests a pore-space hydrate concentration of 7–12%, if hydrate forms as part of a connected framework, and about 22% if it is pore-filling. At the two other northern sites, located between the deepest site and the landward limit of the GHSZ, we suggest that hydrate is present in the sediment as inclusions. Hydrate may be present in small quantities at these two sites (4–5%) of the pore space. The variation in lithology for the three sites indicated by high-resolution seismic profiles may control the distribution, concentration and formation of hydrate and free gas

    Psychiatric patients’ attitudes towards being hospitalized: a national multicentre study in Norway

    Get PDF
    Background The aim of the study was to explore patients’ attitudes towards voluntary and involuntary hospitalization in Norway, and predictors for involuntary patients who wanted admission. Methods A multi-centre study of consecutively admitted patients to emergency psychiatric wards over a 3 months period in 2005–06. Data included demographics, admission status (voluntary / involuntary), symptom levels, and whether the patients expressed a wish to be admitted regardless of judicial status. To analyse predictors of wanting admission (binary variable), a generalized linear mixed modelling was conducted, using random intercepts for the site, and fixed effects for all variables, with logit link-function. Results The sample comprised of 3.051 patients of witch 1.232 (40.4%) were being involuntary hospitalised. As expected 96.5% of the voluntary admitted patients wanted admission, while as many as 29.7% of the involuntary patients stated that they wanted the same. The involuntary patients wanting admission were less likely to be transported by police, had less aggression, hallucinations and delusions, more depressed mood, less use of drugs, less suicidality before admission, better social functioning and were less often referred by general practitioners compared with involuntary patients who did not want admission. In a multivariate analysis, predictors for involuntary hospitalization and wanting admission were, not being transported by police, less aggression and less use of drugs. Conclusions Almost a third of the involuntary admitted patients stated that they actually wanted to be hospitalized. It thus seems to be important to thoroughly address patients’ preferences, both before and after admission, regarding whether they wish to be hospitalized or not

    Evidence from three-dimensional seismic tomography for a substantial accumulation of gas hydrate in a fluid-escape chimney in the Nyegga pockmark field, offshore Norway

    No full text
    In recent years, it has become evident that features commonly called gas chimneys provide major routes for methane to pass through the methane-hydrate stability zone in continental margins and escape to the ocean. One of many such chimneys lying beneath pockmarks in the southeastern Voring Plateau off Norway was investigated with a high-resolution seismic experiment employing a 2-D array of sixteen 4-component ocean bottom seismic recorders at approximately 100 m separation and a dense network of shots to define the 3-D variation of the chimney's structure and seismic properties. The tomographic model derived from P wave travel times shows that P wave velocity inside the chimney is up to 300 m/s higher than in the surrounding strata within the methane-hydrate stability zone. The zone of anomalously high velocity, about 500 m wide near its base, narrowing to about 200 m near the seabed, extends to a depth of 250 m below the seafloor. The depth extent of this zone and absence of high velocity beneath the base of the methane-hydrate stability field make it more likely that it contains hydrate rather than carbonate. If a predominantly fracture-filling model is appropriate for the formation of hydrate in low-permeability sediment, the maximum hydrate concentration in the chimney is estimated to be 14%-27% by total volume, depending on how host-sediment properties are affected by hydrate formation. Doming of the strata penetrated by the chimney appears to be associated with the emplacement of hydrate, accompanying the invasion of the gas hydrate stability zone by free gas
    corecore