96 research outputs found

    Hemodynamic responses to emotional speech in two-month-old infants imaged using diffuse optical tomography

    Get PDF
    Emotional speech is one of the principal forms of social communication in humans. In this study, we investigated neural processing of emotionalspeech (happy, angry, sad and neutral) in the left hemisphere of 21 two-month-old infants using diffuse optical tomography. Reconstructed total hemoglobin (HbT) images were analysed using adaptive voxel-based clustering and region-of-interest (ROI) analysis. We found a distributedhappy > neutral response within the temporo-parietal cortex, peakingin the anterior temporal cortex; a negative HbT response to emotional speech (the average of the emotional speech conditions angry in the anterior superior temporal sulcus (STS), happy > angry in the superior temporal gyrus and posterior superior temporal sulcus, angry </p

    Dermatitis and Aging-Related Barrier Dysfunction in Transgenic Mice Overexpressing an Epidermal-Targeted Claudin 6 Tail Deletion Mutant

    Get PDF
    The barrier function of the skin protects the mammalian body against infection, dehydration, UV irradiation and temperature fluctuation. Barrier function is reduced with the skin's intrinsic aging process, however the molecular mechanisms involved are unknown. We previously demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are essential in the development of the epidermis and that transgenic mice overexpressing Cldn6 in the suprabasal layers of the epidermis undergo a perturbed terminal differentiation program characterized in part by reduced barrier function. To dissect further the mechanisms by which Cldn6 acts during epithelial differentiation, we overexpressed a Cldn6 cytoplasmic tail deletion mutant in the suprabasal compartment of the transgenic mouse epidermis. Although there were no gross phenotypic abnormalities at birth, subtle epidermal anomalies were present that disappeared by one month of age, indicative of a robust injury response. However, with aging, epidermal changes with eventual chronic dermatitis appeared with a concomitant barrier dysfunction manifested in increased trans-epidermal water loss. Immunohistochemical analysis revealed aberrant suprabasal Cldn localization with marked down-regulation of Cldn1. Both the proliferative and terminal differentiation compartments were perturbed as evidenced by mislocalization of multiple epidermal markers. These results suggest that the normally robust injury response mechanism of the epidermis is lost in the aging Involucrin-Cldn6-CΔ196 transgenic epidermis, and provide a model for evaluation of aging-related skin changes

    DNA methylation and body mass index from birth to adolescence : meta-analyses of epigenome-wide association studies

    Get PDF
    Background DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. Methods We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. Results DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P <1.06 x 10(-7), with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth P-enrichment = 1; childhood P-enrichment = 2.00 x 10(-4); adolescence P-enrichment = 2.10 x 10(-7)). Conclusions There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.Peer reviewe

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells

    Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits

    Get PDF
    The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located nearNEDD4LandSLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (R(g)ranging from 0.11 to 0.76, P-values Author summary Although twin studies have shown that body mass index (BMI) is highly heritable, many common genetic variants involved in the development of BMI have not yet been identified, especially in children. We studied associations of more than 40 million genetic variants with childhood BMI in 61,111 children aged between 2 and 10 years. We identified 25 genetic variants that were associated with childhood BMI. Two of these have not been implicated for BMI previously, located close to the genesNEDD4LandSLC45A3. We also show that the genetic background of childhood BMI overlaps with that of birth weight, adult BMI, waist-to-hip-ratio, diastolic blood pressure, type 2 diabetes, and age at menarche. Our results suggest that the biological processes underlying childhood BMI largely overlap with those underlying adult BMI. However, the overlap is not complete. Additionally, the genetic backgrounds of childhood BMI and other cardio-metabolic phenotypes are overlapping. This may mean that the associations of childhood BMI and later cardio-metabolic outcomes are partially explained by shared genetics, but it could also be explained by the strong association of childhood BMI with adult BMI.Peer reviewe

    Innovation, Social Capital, and Regional Policy: The Case of the Communities First Programme in Wales

    Get PDF
    This paper analyses how and why different forms of social capital are associated with different forms of innovation within the Communities First programme in Wales. Quantitative analysis shows that the Communities First programme partnerships analysed in this research are supportive of building both bonding and bridging social capital. Different types of bonding social capital appear to be positively related with two of the three types of innovative activity; it is bridging social capital which is statistically more strongly related to innovation outcomes, with some types of bonding social capital actually negatively related to hidden innovation. Whilst social capital building should not be considered a panacea for increasing levels of innovative activity within policies such as the Communities First programme. The qualitative analysis reveals multiple ways in which the Communities First programme partnerships evaluated are actively encouraging the simultaneous formation of bonding and bridging social capital, with evidence of hidden innovation and in particular social innovation being simultaneously formed. It can be stated, therefore, that regional policy aiming to develop non-traditional forms of innovation should more closely and explicitly reflect the relevance of building and maintaining particular types of bonding and especially bridging social capital

    LongITools: Dynamic longitudinal exposome trajectories in cardiovascular and metabolic noncommunicable diseases

    Get PDF
    The current epidemics of cardiovascular and metabolic noncommunicable diseases have emerged alongside dramatic modifications in lifestyle and living environments. These correspond to changes in our “modern” postwar societies globally characterized by rural-to-urban migration, modernization of agricultural practices, and transportation, climate change, and aging. Evidence suggests that these changes are related to each other, although the social and biological mechanisms as well as their interactions have yet to be uncovered. LongITools, as one of the 9 projects included in the European Human Exposome Network, will tackle this environmental health equation linking multidimensional environmental exposures to the occurrence of cardiovascular and metabolic noncommunicable diseases
    corecore