307 research outputs found

    A note on totally regular variables and Appell sequences in hypercomplex function theory

    Get PDF
    Series title : Lecture notes in computer science, vol. 7971, ISSN 0302-9743The aim of our contribution is to call attention to the relationship between totally regular variables, introduced by R. Delanghe in 1970, and Appell sequences with respect to the hypercomplex derivative. Under some natural normalization condition the set of all paravector valued totally regular variables defined in the three dimensional Euclidean space will be completely characterized. Together with their integer powers they constitute automatically Appell sequences, since they are isomorphic to the complex variables.Fundação para a Ciência e a Tecnologia (FCT

    Introductory clifford analysis

    Get PDF
    In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications

    Segal-Bargmann-Fock modules of monogenic functions

    Get PDF
    In this paper we introduce the classical Segal-Bargmann transform starting from the basis of Hermite polynomials and extend it to Clifford algebra-valued functions. Then we apply the results to monogenic functions and prove that the Segal-Bargmann kernel corresponds to the kernel of the Fourier-Borel transform for monogenic functionals. This kernel is also the reproducing kernel for the monogenic Bargmann module.Comment: 11 page

    Harmonic analysis and hypercomplex function theory in co-dimension one

    Get PDF
    Fundamentals of a function theory in co-dimension one for Clifford algebra valued functions over ℝn+1 are considered. Special attention is given to their origins in analytic properties of holomorphic functions of one and, by some duality reasons, also of several complex variables. Due to algebraic peculiarities caused by non-commutativity of the Clifford product, generalized holomorphic functions are characterized by two different but equivalent properties: on one side by local derivability (existence of a well defined derivative related to co-dimension one) and on the other side by differentiability (existence of a local approximation by linear mappings related to dimension one). As important applications, sequences of harmonic Appell polynomials are considered whose definition and explicit analytic representations rely essentially on both dual approaches.The work of the first, second and fourth authors was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEst-OE/MAT/UI4106/2013. The work of the second author was supported by Portuguese funds through the CMAT - Centre of Mathematics and FCT within the Project UID/MAT/00013/2013

    q-deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials

    Get PDF
    We define a q-deformation of the Dirac operator, inspired by the one dimensional q-derivative. This implies a q-deformation of the partial derivatives. By taking the square of this Dirac operator we find a q-deformation of the Laplace operator. This allows to construct q-deformed Schroedinger equations in higher dimensions. The equivalence of these Schroedinger equations with those defined on q-Euclidean space in quantum variables is shown. We also define the m-dimensional q-Clifford-Hermite polynomials and show their connection with the q-Laguerre polynomials. These polynomials are orthogonal with respect to an m-dimensional q-integration, which is related to integration on q-Euclidean space. The q-Laguerre polynomials are the eigenvectors of an su_q(1|1)-representation

    Radial and angular derivatives of distributions

    Get PDF
    When expressing a distribution in Euclidean space in spherical coordinates, derivation with respect to the radial and angular co-ordinates is far from trivial. Exploring the possibilities of defining a radial derivative of the delta distribution 8{x) (the angular derivatives of S(x) being zero since the delta distribution is itself radial) led to the introduction of a new kind of distributions, the so-called signumdistributions, as continuous linear functionals on a space of test functions showing a singularity at the origin. In this paper we search for a definition of the radial and angular derivatives of a general standard distribution and again, as expected, we are inevitably led to consider signumdistributions. Although these signumdistributions provide an adequate framework for the actions on distributions aimed at, it turns out that the derivation with respect to the radial distance of a general (signum)distribution is still not yet unambiguous

    On numerical aspects of pseudo-complex powers in R^3

    Get PDF
    In this paper we consider a particularly important case of 3D monogenic polynomials that are isomorphic to the integer powers of one complex variable (called pseudo-complex powers or pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been discussed by several authors and from different points of view. Here our main concern are numerical aspects of the implementation of PCP as bases of monogenic polynomials of homogeneous degree k. The representation of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed analysis for showing the numerical effciency of the use of PCP. In this context a modiffcation of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, the Research Centre of Mathematics of the University of Minho and the Portuguese Foundation for Science and Technology ("FCT - Fundacao para a Ciencia e a Tecnologia"), within projects PEst-OE/MAT/UI4106/2014 and PEstOE/MAT/UI0013/2014

    Three-term recurrence relations for systems of Clifford algebra-valued orthogonal polynomials

    Get PDF
    Recently, systems of Clifford algebra-valued orthogonal polynomials have been studied from different points of view. We prove in this paper that for their building blocks there exist some three-term recurrence relations, similar to that for orthogonal polynomials of one real variable. As a surprising byproduct of own interest we found out that the whole construction process of Clifford algebra-valued orthogonal polynomials via Gelfand-Tsetlin basis or otherwise relies only on one and the same basic Appell sequence of polynomials.This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications of the University of Aveiro, the CMAT - Research Centre of Mathematics of the University of Minho and the FCT - Portuguese Foundation for Science and Technology (“Fundação para a Ciˆencia e a Tecnologia”), within projects PEst-OE/MAT/UI4106/2014 and PEst-OE/MAT/UI0013/2014.info:eu-repo/semantics/publishedVersio
    corecore