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1 Introduction

Quantum algebras are q-deformed versions of universal enveloping algebras of Lie algebras, the latter are
recovered as the deformation parameter q goes to unity. The study of quantum algebras leads to the
use of mathematical tools of q-analysis, see [1, 2]. In [3] Jackson originally introduced the q-analogues
of differentiation, integration and special functions in the context of q-hypergeometric series (also known
as basic hypergeometric series). In particular, there are connections between representations of quantum
algebras and q-special functions ([4]) and q-calculus ([5]). Also in the framework of q-harmonic analysis
of this paper, we will obtain an suq(1|1)-representation for which the q-Laguerre polynomials (see [1])
are eigenvectors.
In [6] q-analysis is used to solve the SOq(m)-invariant Schrödinger equation in quantum Euclidean space,
see [7]. The results in [8] about q-difference equations can be used to solve more general SOq(m)-invariant
Schrödinger equations in quantum Euclidean space. Also the objects of q-harmonic analysis developed
in this article can be used to study quantum Euclidean space.
The interest for quantum algebras in physics was partly triggered by the introduction of the q-deformed
harmonic oscillator (see [9] for an overview). The first approaches however, lacked any dynamical content
behind the hamiltonian. In [5] an overview is given of different realizations of the q-Heisenberg algebra,
using the q-derivative, leading to the q-harmonic oscillator. In [10] a procedure for general q-deformed
quantum mechanics was constructed using the q-derivative. Until now the higher dimensional q-deformed
isotropic oscillator is only defined in quantum Euclidean space or in undeformed space by an unnatural
separation of the radial part.
The q-harmonic oscillators lead to the q-Hermite polynomials see e.g. [11]. In [1, 12] it was shown that the
q-Hermite polynomials are orthogonal with respect to q-integration and have annihilation and creation
operators using the q-derivative. Because all the different types of the q-Hermite polynomials satisfy
many properties that are analogues of properties of the Hermite polynomials, see e.g. [11, 12, 13], they
are interesting objects of study themselves.
In this study we define a theory of q-deformed derivatives in higher dimensions and a q-deformed Laplace
operator acting on functions with commuting variables. Since we use Clifford analysis ([14, 15]) for this,
we define a q-deformed Dirac operator with its square a q-Laplace operator. As the undeformed SO(m)-
invariant harmonic operators generate the Lie algebra sl2(R) we now find a q-deformation of this algebra.
This leads to a Howe dual pair ([16]) with a quantum algebra, (SO(m), sl2(R)q).
Because the q-Laplace operator is scalar, it can be expressed without Clifford algebras. However, the
Clifford-approach to this q-Laplace operator is more natural. The resulting q-Laplace operator can be used
to put an existing q-deformation of the isotropic Schrödinger equation in undeformed space ([8, 17, 18])
in a complete setting. This equation has its origin in quantum Euclidean space, see [6, 7, 19]. Using
the q-Laplace operator, the angular and radial part are reunited in a complete Schrödinger equation in
undeformed space. This quantum system has the same energy spectrum as the Schrödinger equation in
quantum Euclidean space.
Using the q-deformed Dirac operator we can define a q-deformation of the Clifford-Hermite polynomials.
These are higher dimensional generalizations of the one dimensional Hermite polynomials, see [20]. Similar
to the undeformed case there is a connection between the q-Clifford Hermite polynomials and the one
dimensional q-Laguerre polynomials which were introduced in [21, 22]. Once again, this justifies the choice
of our q-Dirac operator. Using this construction we obtain realizations of su(1|1)q acting on R[t] for which
the q-Laguerre polynomials are the eigenvectors. This is a concrete generalization of the occurrence of
the Laguerre polynomials as formal eigenvectors in the l2(Z+) representation space for su(1|1), see e.g.
[23].
The paper is organized as follows. First we repeat some facts about quantum numbers and derivatives
and give a short introduction to Clifford analysis. From a list of axioms we derive a unique q-Dirac
operator, which leads to a q-Laplace operator. We show an important connection with the SO(m)q-
invariant Laplace operator in q-Euclidean space. Then we construct an integration which leads to q-
Cauchy formulas. Finally we define the q-Clifford-Hermite polynomials and prove their most important
properties.
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2 Preliminaries

We give a short introduction to quantum numbers (q-numbers), q-derivatives and q-integration, see
[1, 2, 3, 9]. For u a number or operator, and q the deformation parameter, we define (where it exists) the
q-deformation of u by

[u]q =
qu − 1
q − 1

.

It is clear that limq→1[u]q = u. In this paper we assume q ∈ R+. The q-derivative of a function f(t) is
defined by

∂qt (f(t)) =
f(qt)− f(t)

(q − 1)t
. (1)

For this to exist, the function has to be defined in t and qt and has to be differentiable in the origin.
From the definition we find

∂qt (tk) =
qk − 1
q − 1

tk−1 = [k]qtk−1

and the Leibniz rule

∂qt t = qt∂qt + 1. (2)

This is a special case of the following two Leibniz rules

∂qt (f1(t)f2(t)) = ∂qt (f1(t))f2(t) + f1(qt)∂qt (f2(t)) (3)
= ∂qt (f1(t))f2(qt) + f1(t)∂qt (f2(t)). (4)

For q < 1, the q-integration on an interval [0, a] with a ∈ R is given by∫ a

0

f(t) dqt = (1− q)a
∞∑
k=0

f(aqk)qk. (5)

More general intervals are defined by
∫ b
a

=
∫ b

0
−
∫ a

0
and satisfy the important property∫ b

a

(∂qt f) (t) dqt = f(b)− f(a). (6)

The q-factorial of an integer k is given by [k]q! = [k]q[k− 1]q · · · [1]q. This leads to the introduction of the
q-exponential

Eq(t) =
∞∑
j=0

tj

[j]q!
. (7)

In order to find its inverse we define a second q-exponential by

eq(t) = Eq−1(t) =
∞∑
j=0

q
1
2 j(j−1) tj

[j]q!
. (8)

Now Eq(t)eq(−t) = 1, see [2, 4, 9]. It is easily calculated that

∂qtEq(t) = Eq(t) , ∂qt eq(t) = eq(qt). (9)

The series Eq(t) converges absolutely and uniformly everywhere if q > 1 and for |t| < 1
1−q if q < 1, see

[1]. The q-binomial coefficients are defined by(
n

k

)
q

=
[n]q!

[n− k]q![k]q!
.
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We can also define the q-Gamma function for q < 1

Γq(t) =
∏∞
k=1(1− qk)∏∞
k=0(1− qt+k)

(1− q)1−t,

with the property that Γq(t + 1) = [t]qΓq(t), see [2]. The function Γq admits the following integral
representation

Γq(z) =
∫ 1

1−q

0

dqt t
z−1eq(−qt), (10)

see [1, 4]. Sometimes we will encounter expressions which we will write as q2-deformations, for example
[2u]q = (q + 1)[u]q2 , therefore we fix the notation Q = q2.
Now we briefly recall the basic notions of Clifford analysis. For more details we refer the reader to
[14, 15]. Denote by R0,m the Clifford algebra generated by an orthonormal basis (e1, · · · , em) for Rm
with multiplication rules

eiej + ejei = −2δij (11)

for 1 ≤ i, j ≤ m. The algebra generated by these Clifford numbers and the m commuting variables xj ,
which commute with ei, 1 ≤ i ≤ m, is the algebra of Clifford valued polynomials P = R[x1, · · · , xm] ⊗
R0,m. The vector variable is identified with the first order Clifford polynomial of the form x =

∑m
j=1 ejxj .

Using (11) we find that the square of this vector variable is scalar valued, x2 = −
∑m
j=1 x

2
j = −r2. The

corresponding vector derivative in the vector variable x is the Dirac operator,

∂x = −
m∑
j=1

ej∂xj .

The square of the Dirac operator is again scalar, ∂2
x = −∆, with ∆ the Laplace operator. Using the

Clifford multiplication rules (11) we can calculate

{x, ∂x} = ∂xx+ x∂x = 2E +m, (12)

with E =
∑m
j=1 xj∂xj the Euler operator. In particular we find ∂x(x) = m and

∂xx
2 = x2∂x + 2x. (13)

We will use the notation f(x) = f(x1, · · · , xm). Clifford analysis deals with the function theory of
solutions of ∂xf(x) = 0, called monogenic functions, in particular monogenic polynomials of degree k.

Definition 1. An element F ∈ P is a spherical monogenic of degree k if it satisfies

∂xF = 0 and EF = kF.

The space of all spherical monogenics of degree k is denoted by Mk.

In the same way we can define the space of spherical harmonics of degree k, Hk, as the null solutions of
the Laplace operator, clearly Mk ⊂ Hk. We have the following well-known decomposition of the space
of polynomials.

Lemma 1 (Fischer decomposition I). The vector space Pk decomposes as

Pk =
bk/2c⊕
i=0

x2iHk−2i.

This decomposition is unique, hence
∑
i x

2iHk−2i = 0, with (Hj ∈ Hj) implies Hk−2i = 0 for every i.
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Since ∆ is scalar, we can replace P with R[x1, · · · , xm] in the previous lemma. The decomposition can
be refined to

Lemma 2 (Fischer decomposition II). The vector space Pk decomposes as

Pk =
k⊕
i=0

xiMk−i.

This decomposition is unique, hence
∑
j x

k−jMj = 0 (with Mj ∈Mj) implies Mj = 0 for every j.

Commutation rules (12) and (13) yield

∂xx
2lMk = 2lx2l−1Mk (14)

∂xx
2l+1Mk = (2l + 2k +m)x2lMk (15)

These equations together with lemma 2 imply that every (scalar) Hk can be decomposed as

Hk = Mk + xMk−1. (16)

The operators ∂x and x generate a finite-dimensional Lie super-algebra isomorphic to osp(1|2). The even
subalgebra is generated by ∂2

x, x2 and E +m/2 and is isomorphic to the Lie algebra sl2(R), see [16, 24].
The commutation relations of the Lie super-algebra are given by[

∂2
x/2, x

2/2
]

= E +m/2 {x, x} = 2x2[
∂2
x/2,E +m/2

]
= 2∂2

x/2 {∂x, ∂x} = 2∂2
x[

x2/2,E +m/2
]

= −2x2/2 {∂x, x} = 2E +m

and [
x, x2

]
= 0

[
∂x, x

2
]

= 2x[
x, ∂2

x

]
= −2∂x

[
∂x, ∂

2
x

]
= 0

[x,E +m/2] = −x
[
∂x,E +m/2

]
= ∂x.

An important feature in harmonic and Clifford analysis is the occurrence of Howe dual pairs, see [16].
The generators of the Lie algebra sl2(R) are SO(m)-invariant. These operators acting on the module
⊕jr2jHk give an infinite-dimensional irreducible representation of sl2(R). The blocks r2jH′k, with H′k
the scalar spherical harmonics, are the irreducible pieces of R[x1, · · · , xm] under the action of SO(m).
This can be refined to the Howe dual pair (Spin(m), osp(1|2)) (see [14, 15]), with Spin(m) the universal
cover of SO(m).
These Howe dual pairs return in different generalizations of harmonic and Clifford analysis. In Dunkl
harmonic analysis (see [25]) we have the pair (G, sl2(R)) with G a Coxeter group. In super harmonic
analysis (see [24]) we find the Howe dual pair (SO(m)× Sp(2n), sl2(R)). The Howe dual pair for hermitian
Clifford analysis can be found in [26]. By defining q-deformed Clifford analysis we will obtain Howe dual
pairs with the quantum algebras sl(R)q and osp(1|2)q.
The Euler operator E = r∂r represents the radial part in x∂x, the angular part is given by the Gamma
operator Γ,

x∂x = E + Γ. (17)

By using x = rξ with ξ2 = −1, this equation can also be written as ∂x = −ξ(∂r + 1
rΓ). While the Euler

operator is scalar, the Gamma operator is a bivectorial operator, Γ = −
∑
i<j eiej(xi∂xj − xj∂xi). Using

Ex = xE + x and (12) we obtain the commutation relations for the Gamma operator,

Γx = x(m− 1− Γ) (18)
Γx2 = x2Γ. (19)
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We will also need the main anti-involution on the Clifford algebra R0,m, defined by

ei = −ei
ab = ba, for all a, b ∈ R0,m.

For Clifford valued functions on the unit sphere there is an inner product

〈f |g〉 =
∫

Sm−1
dξ

[
f g
]
0
,

with · the main anti-involution and [·]0 : R0,m → R, the projection onto the scalar part. For two spherical
harmonics of degree k 6= l, ∫

Sm−1
dξ HkHl = 0 (20)

holds. In particular, we will consider a fixed orthonormal basis of spherical monogenics M (p)
k ,∫

Sm−1
dξ

[
M

(p)
k M

(r)
l

]
0

= δklδpr. (21)

3 Definition of the operators

3.1 The q-Dirac operator

Our aim is to obtain a q-deformed version of the vector derivative, or Dirac operator ∂x which we will
denote by ∂qx. First we derive 4 axioms such an operator should satisfy. Inspired by ∂qt (t) = 1 = [1]q
and formula (12) we impose ∂qx(x) = [m]q. We also need a good q-deformed Leibniz rule based on (2).
We deform commutation relation (13) in stead of (12) because x2 is scalar. Therefore we can elegantly
extend ∂qt t

2 = q2t2∂qt + (q + 1)t to

∂qxx
2 = q2x2∂qx + (q + 1)x.

To obtain a q-deformation of the Laplace operator, (∂qx)2 has to be a scalar operator. For the last axiom
we use the Fischer decomposition in lemma 2 to find that a basis for the polynomials of degree one is
given by

x, x1e2 + x2e1, · · · , x1em + xme1.

It can be shown that all monogenic functions are Taylor series in the xje1 + x1ej , j 6= 1 (see [14, 15]).
This is a generalization of the fact that holomorphic functions (null solutions of the Cauchy-Riemann
operator ∂z) are Taylor series in z and not in z. Because ∂qx should be a q-deformation of the derivative
with respect to x we do not want it to mix up with the derivation with respect to x1e2 + x2e1. This
means ∂qx should satisfy

∂qxf = 0

when ∂xf = 0. Summarizing, ∂qx should satisfy the following 4 axioms,

(A1) ∂qx(x) = [m]q

(A2) ∂qxx
2 = q2x2∂qx + (q + 1)x

(A3) (∂qx)2 is scalar
(A4) ∂qxMk = 0.

We will show that these axioms uniquely define the q-Dirac operator on P.
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Lemma 3. A linear operator on P satisfying (A2) and (A3) also satisfies the property that

∂qxx+ q2x∂qx

is a scalar operator.

Proof. We calculate (∂qx)2x2 using (A2),

(∂qx)2x2 = q2∂qxx
2∂qx + (q + 1)∂qxx

= q4x2(∂qx)2 + q2(q + 1)x∂qx + (q + 1)∂qxx.

Rearranging terms yields

(∂qx)2x2 − q4x2(∂qx)2 = (q + 1)(∂qxx+ q2x∂qx). (22)

Because x2 and (∂qx)2 are scalar we obtain the lemma.

Lemma 4. For a linear operator on P satisfying (A1)− (A4), the following relation holds,

∂qxxMk = [m+ 2k]qMk.

Proof. We know from (A1) that this holds for k = 0. Now we assume that ∂qxxMk = [m+ 2k]qMk holds
and prove that it also holds for k + 1. Using (A4) yields

∂qxxMk+1 = (∂qxx+ q2x∂qx)Mk+1. (23)

We use (A2), (A4) and the induction step to calculate

(∂qxx+ q2x∂qx)xMk = (q + 1 + q2[m+ 2k]q)xMk

= [m+ 2k + 2]qxMk.

Let Hk+1 be an arbitrary scalar spherical harmonic of degree k+ 1, this means x∂xHk+1 ∈ xMk and we
can substitute x∂xHk+1 for xMk in the equation above. Equation (17) implies

x∂xHk+1 = (k + 1)Hk+1 + ΓHk+1,

so the scalar part of x∂xHk+1 is proportional to Hk+1. Since (∂qxx+ q2x∂qx) is a scalar operator (lemma
3) the equation above holds separately for both Hk+1 and ΓHk+1. So for every scalar Hk+1

(∂qxx+ q2x∂qx)Hk+1 = [m+ 2k + 2]qHk+1.

This equation can be multiplied with elements of the Clifford algebra on the right hand side, so it also
holds for Mk+1. Combining this with equation (23) yields

∂qxxMk+1 = [m+ 2k + 2]qMk+1,

so the lemma is proven by induction.

Theorem 1. There is at most one linear operator on P satisfying (A1)−(A4). The action on the Fischer
decomposition (lemma 2) is given by

∂qxx
2lMk = [2l]qx2l−1Mk

∂qxx
2l+1Mk = [2l + 2k +m]qx2lMk.

Proof. Iterating (A2) yields

∂qxx
2l = [2l]qx2l−1 + q2lx2l∂qx.

Together with lemma 4, this proves the theorem.
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We introduce a closed expression for the operator which acts on P as in theorem 1. This allows it to be
defined on a function space larger than the polynomials.

Definition 2. The q-deformed Dirac operator is formally given by

∂qx =
1
x

[x∂x]q

=
1
x

[E + Γ]q =
x

x2
([E]q + qE[Γ]q)

= −ξ
(
∂qr +

1
r
qr∂r [Γ]q

)
.

Remark 1. It is important to note that E and Γ commute, so qE+Γ = qEqΓ. This operator is clearly
defined everywhere on functions in the space P ⊗J with J functions of r on R+. This corresponds to the
spaces mostly used in quantum Euclidean space (see e.g. [6, 7]).

The operator qE can always be defined on f(x) if qx is in the domain of f . It is harder to define qΓ. It
can be defined locally on analytic functions. The Cauchy-Kowalewskaya theorem on the system

∂ug(x, u) = Γxg(x, u) g(x, 0) = f(x),

states that g(x, u) is analytical when f(x) is. Because g is analytical,

qΓf(x) =
∞∑
j=0

(ln q)j

j!
Γjxg(x, 0)

=
∞∑
j=0

(ln q)j

j!
(
∂jug
)

(x, 0)

= g(x, ln q).

Remark 2. We could also consider functions which are only defined on ∂B(Ri) for some Ri ∈ R+ and
are analytical on these (m− 1)-dimensional manifolds. The operator Γx is elliptic on these manifolds.

All the functions we will encounter in this paper are polynomials times radial functions which pose no
problem. When we take the case m = 1 we find that

∂qx =
1

e1x1
[e1x1(−e1∂x1)]q

= − e1

x1
[x1∂x1 ]q

= −e1∂
q
x1
,

so the one dimensional case is a special case of this theory.

Theorem 2. The operator ∂qx in definition 2 is the unique linear operator on P satisfying axioms (A1)−
(A4).

Proof. Definition 2 and equations (14) and (15) imply that ∂qx satisfies the properties in theorem 1, so it
is unique. We only need to show that ∂qx satisfies the axioms (A1)− (A4) to prove the existence. Axiom
(A1) is trivial, axiom (A2) follows from formula (19),

∂qxx
2 =

1
x

[E + Γ]qx2

= x2 1
x

[E + 2 + Γ]q

= x2 1
x

(q + 1 + q2[E + Γ]q)

= q2x2∂qx + (q + 1)x.
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To prove axiom (A3) we calculate

(∂qx)2x2lMk = [2l − 2 + 2k +m]q[2l]qx2l−2Mk

(∂qx)2x2l+1Mk−1 = [2l]q[2l + 2k − 2 +m]qx2l−1Mk−1.

Since every scalar spherical harmonic can be decomposed as Hk = Mk + xMk−1, we find that

(∂qx)2x2lHk = [2l]q[2l − 2 + 2k +m]qx2l−2Hk. (24)

Since the set {x2lHk} spans all scalar polynomials (lemma 1), (∂qx)2 acting on every scalar polynomial is
scalar. Axiom (A4) follows immediately from the definition.

The operator in definition 2 is of the form

∂qx = −ei
m∑
i=1

Di (25)

where Di are scalar operators. Because of lemma 1 it suffices to calculate the action on scalar polynomials
x2lHk, with decomposition Hk = Mk + xMk−1,

∂qxx
2lHk = [2l]qx2l−1Hk + q2lx2l[m+ 2k − 2]qMk−1

= [2l]qx2l−1Hk + q2lx2l [m+ 2k − 2]q
m+ 2k − 2

∂xHk

which clearly is a vector. Since, by axiom (A3), the square of ∂qx is a scalar operator,

(∂qx)2 =
m∑

i,j=1

eiejDiDj

= −
m∑
i=1

D2
i +

∑
i<j

eiej(DiDj −DjDi)

is scalar. Since the set {eiej , i < j} is linearly independent, the operators Di must all commute. We
will call them the q-partial derivatives. The Dirac operator ∂x is invariant under the action of Spin(m),
the universal cover of SO(m). How the spin group can be realized in Clifford analysis can be found in
[14] and [15]. Because multiplication with x is also Spin(m)-invariant, we find that ∂qx, as defined by
definition 2 is also Spin(m)-invariant.

Lemma 5. The q-Dirac operator in definition 2 satisfies

∂qxx = [E− Γ +m]q.

Proof. We use commutation rule (18) to calculate

∂qxx =
1
x

[E + Γ]qx = [E + 1 +m− 1− Γ]q.

Lemma 6. For f a scalar function of r, we have the following Leibniz rule

∂qxf(r) = ∂qx(f(r)) + f(qr)∂qx =
f(qr)− f(r)

(q − 1)x
+ f(qr)∂qx.
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Proof. Because Γ commutes with r we find

∂qxf(r) =
1
x

([E]qf(r) + qEf(r)[Γ]q)

=
1
x

([E]qf(r)− f(qr)[E]q) +
1
x
f(qr)[E]q +

1
x
f(qr)qE[Γ]q

=
1
x

1
q − 1

(f(qr)qE − f(r)− f(qr)qE + f(qr)) + f(qr)∂qx

=
f(qr)− f(r)

(q − 1)x
+ f(qr)∂qx.

3.2 The q-Laplace operator

As in the undeformed case we define the q-Laplace operator as minus the square of the q-Dirac operator.

Definition 3. The q-deformed Laplace operator on analytic functions is given by

∆q = −(∂qx)2.

Because ∂qx∂
q
x(Mk+xMk−1) = 0 we find that the spherical harmonics are the polynomial null solutions of

the q-Laplace operator. The undeformed Laplace operator can be decomposed into its radial and angular
part,

r2∆ = E(m− 2 + E) + Γ(m− 2− Γ).

The angular part is the Laplace-Beltrami operator

∆LB = Γ(m− 2− Γ), (26)

which is clearly scalar although it is defined here using the Clifford valued Gamma operator. We will
also derive such a decomposition for the q-Laplace operator. It turns out that the angular part of the
q-Laplace operator will be given by

Definition 4. The q-Laplace-Beltrami operator on analytic functions is defined as

∆q
LB = [Γ]q[m− 2− Γ]q.

This operator is scalar, which is not obvious at first sight. This is a consequence of the decomposition of
the q-Laplace operator in theorem 3. Property (19) of the Gamma operator implies that the q-Laplace
Beltrami operator commutes with radial functions.

Theorem 3. The q-Laplace operator can be decomposed as

∆q = qm−1(∂qr )2 + [m− 1]q
1
r
∂qr +

1
r2
qE∆q

LB ,

r2∆q = [E]q[m− 2 + E]q + qE[Γ]q[m− 2− Γ]q.

Proof. We calculate using definition 2, lemma 5 and formula (18)

r2∆q = x[E + Γ]q[E− Γ +m]q
1
x

= [E +m− 2− Γ]q[E + Γ]q
=

(
[E +m− 2]q + qE+m−2[−Γ]q

) (
[E]q + qE[Γ]q

)
= [E +m− 2]q[E]q + qE ([Γ]q[E +m− 2− Γ]q + qm−2[−Γ]q[E]q

)
= [E +m− 2]q[E]q + qE[Γ]q

(
[E +m− 2− Γ]q + qm−2 q

−Γ(1− qΓ)
qΓ − 1

[E]q

)
= [E +m− 2]q[E]q + qE[Γ]q[m− 2− Γ]q.

10



This leads to the second expression, the first one can be found from

1
r2

[E]q[m− 2 + E]q =
1
r
∂qr ([m− 2]q + qm−2r∂qr )

= [m− 2]q
1
r
∂qr + qm−2 1

r
∂qr + qm−1(∂qr )2.

Remark 3. In [27] a theory of Clifford analysis in superspace was developed by constructing a Dirac
operator which satisfies ∂2

x = ∆ with ∆ the well-known orthosymplectic super Laplace operator. Using
definition 2 we can also construct a theory of q-deformed Clifford and harmonic analysis in superspace.

The decomposition of the q-Laplace operator in theorem 3 can be used to calculate the action on the
product of a radial function and a spherical harmonic.

Lemma 7. For f a function of r and Hk a spherical harmonic of degree k, the following holds

∆qf(r)Hk = Hk

[
qm−1+2k(∂qr )2 + [m− 1 + 2k]q

1
r
∂qr

]
f(r).

Proof. Since ∆qHk = 0, theorem 3 yields

qE∆LBHk = −[k]q[m− 2 + k]qHk.

We use this to calculate

∆qf(r)Hk = Hk

[
1
r2

[E + k]q[m− 2 + E + k]q −
1
r2
qE[k]q[m− 2 + k]q

]
f(r)

= Hk
1
r2

[
[E]q[m− 2 + E + k]q + qE[k]q[m− 2 + E + k]q − qE[k]q[m− 2 + k]q

]
f(r)

= Hk
1
r2

[
[E]q[m− 2 + E + k]q + qE[k]qqm−2+k[E]q

]
f(r)

= Hk
1
r2

[E]q[m− 2 + E + 2k]qf(r).

This is the usual action of ∆q on f(r), with substitution m→ m+ 2k.

It is inelegant that scalar operators like the q-deformation of the Laplace and Laplace-Beltrami operator
are defined only using Clifford algebras. Therefore we derive purely scalar expressions for ∆q

LB and ∆q.

Lemma 8. The q-Laplace-Beltrami on analytic functions is given by

∆q
LB = [

m

2
− 1−

√
(
m

2
− 1)2 −∆LB ]q[

m

2
− 1 +

√
(
m

2
− 1)2 −∆LB ]q.

Proof. It is not a priori clear that the right hand side is well defined. In the case q = 1 we find(m
2
− 1
)2

−
((m

2
− 1
)2

−∆LB

)
,

so there does not really appear a square root of the Laplace-Beltrami operator, which would be ill-defined.
The same thing happens in the q-deformed case. The right hand side is defined by a series expansion, so
it is equal to the series expansion of

qm−2 − qm2 −12 cosh(ln q
√

(m2 − 1)2 −∆LB) + 1
(q − 1)2

.

11



Using equation (26), we calculate

cosh(ln q
√

(
m

2
− 1)2 −∆LB) =

∞∑
l=0

(ln q
√

(Γ− m
2 + 1)2)2l

(2l)!

=
∞∑
l=0

(ln q(Γ− m
2 + 1))2l

(2l)!

= cosh(ln q(Γ− m

2
+ 1)).

This means the expression on the right hand side is equal to

qm−2 − qm2 −1(qΓ−m2 +1 + q
m
2 −1−Γ) + 1

(q − 1)2
=

qm−2 − qΓ − qm−2−Γ + 1
(q − 1)2

,

which is the q-Laplace-Beltrami operator in definition 4.

Similarly we can prove the following scalar expressions for the q-Laplace operator.

Theorem 4. The q-Laplace operator on analytical functions is given by

∆q =
1
r2

[
E +

m

2
− 1 +

√
(E +

m

2
− 1)2 − r2∆

]
q

[
E +

m

2
− 1−

√
(E +

m

2
− 1)2 − r2∆

]
q

=
1
r2

[
E +

m

2
− 1 +

√
(
m

2
− 1)2 −∆LB

]
q

[
E +

m

2
− 1−

√
(
m

2
− 1)2 −∆LB

]
q

.

As we will see the q-Laplace operator is related to a fundamental object in quantum Euclidean space,
without connection to Clifford analysis. It is remarkable that it is defined more elegantly using Clifford
algebras (which disappear in the resulting operator) in theorem 3, than without Clifford algebras, in
theorem 4.

3.3 A q-deformed version of sl2(R) and osp(1|2)

In classical harmonic analysis the SO(m)-invariant operators r2/2, ∆/2 and E + m
2 generate the Lie

algebra sl2(R), see [16]. These operators also generate as an associative algebra the universal enveloping
algebra of sl2(R). By q-deforming this to Uq(sl2(R)) we take one of the two dually related ways to
q-deform a Lie-algebra. We define

E =
q + 1

4

(
∂qxx+ q2x∂qx

)
=
q + 1

4
(
[E +m− Γ]q + q2[E + Γ]q

)
. (27)

This operator is scalar, see lemma 3. We will use the notations {A,B}c = AB + cBA and [A,B]c =
AB − cBA. Rewriting equation (22) and a straightforward calculation lead to[

∆q/2, r2/2
]
q4

= E

[∆q/2, E]q2 =
[4]q[2]q

4
∆q/2[

E, r2/2
]
q2

=
[4]q[2]q

4
r2/2.

So r2/2, ∆q/2 and E form a q-deformed version of sl2(R). This corresponds to the su(1|1)q quantum
algebra in [28], which is defined by operators L1, L−1 and L0, satisfying

q−2L1L−1 − q2L1−1L1 = q
[4]q
[2]q

L0

q−1L1L0 − qL0L1 = L1

q−1L0L−1 − qL−1L0 = L−1.

12



This algebra is obtained from the identification L1 = q∆q

[2]q
, L−1 = qr2

[2]q
and L0 = 4q

[4]q [2]q
E. Now we prove

that these generators of sl2(R)q are still SO(m)-invariant. Therefore, a deformation of the Howe dual
pair (SO(m), sl2(R)) to (SO(m), sl2(R)q) is obtained.

Lemma 9. The operators r2, ∆q and E are SO(m)-invariant.

Proof. Since the undeformed operators are SO(m)-invariant, we find that r2 is SO(m)-invariant and
using theorem 4 that ∆q is SO(m)-invariant. Because E can be written as the q4-commutator of r2 and
∆q it is also invariant.

The module ⊕jr2jHk forms a lowest weight module for the representation of sl2(R) given by the action
of ∆, r2 and E +m/2. The lowest weight vector is Hk with lowest weight m/2 + k. The action of ∆q, r

2

and E has the same structure but with q-deformed coefficients, so we also obtain a lowest weight module
for sl2(R)q.
We can consider a larger algebra than sl2, generated by ∂x and x. Then we find the Lie superalgebra
osp(1|2). Here we give the q-deformed commutation rules of the algebra generated by ∂qx and x

{x, x} = −2r2 {∂qx, x}q2 =
q + 1

2
E {∂qx, ∂qx} = −2∆q

and [
x, r2

]
= 0

[
∂qx, r

2
]
q2

= −(q + 1)x

[∆q, x]q2 = −(q + 1)∂qx
[
∂qx,∆q

]
= 0

[E, x]q2 = (q+1)2

4 x− q2(1− q2)r2∂qx

[
∂qx, E

]
q2

= (q+1)2

4 ∂qx − q2(1− q2)x∆q.

As an illustration we calculate [∆q, x]q2 , using definition 2, lemma 5, the fact that E and Γ commute and
axiom (A2)

(∂qx)2x =
1
x
x∂qx∂

q
xx =

1
x
∂qxxx∂

q
x

=
1
x

((q + 1)x+ q2x2∂qx)∂qx

= (q + 1)∂qx + q2x(∂qx)2.

Since ∂qx is Spin(m)-invariant we also obtain the Howe dual pair (Spin(m), osp(1|2)q).

4 q-analogues of the radial Schrödinger equation

In [6, 7] the Schrödinger equation of the harmonic oscillator in the m-dimensional quantum Euclidean
space was studied. The symmetry group of the construction is SOq(m), see [19]. The Hopf algebra
Funq(SO(m)) of functions on SOq(m) are power series in Tij , with Tij(g) the matrix of the fundamental
representation for g ∈ SO(m). They satisfy TCTT = C, for the metric C and have commutation relations
determined by the braid matrix R̂, R̂ijklT

k
s T

l
p = T jl T

i
kR̂

kl
sp. In the undeformed case R̂ijkl = δikδjl. The braid

matrix can be written using projection operators as

R̂ = qPS − q−1PA + q1−mP1.

The braid matrix is connected to the metric by the relation (P1)ijkl = CijCkl
CpqCpq

. The commutation relations

for the variables and the derivatives are given by (PA)ijklx
kxl = 0 and (PA)ijkl∂

k∂l = 0. The action of the
derivatives is given by the Leibniz rule

∂ixj = Cij + qR̂ijklx
k∂l.
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The metric is used to define the generalized norm squared x2 = x ·x = xiCijx
j and the Laplace operator

∂ · ∂ = ∂iCij∂
j , they are clearly SOq(m)-invariant. The function space considered is freely generated by

the xk modulo the PA-commutation relations. The center is generated by 1 and x2 (see [6, 7, 19]).
This allows to construct a q-deformed Hamiltonian with the corresponding Schrödinger equation

H Ψ = [−qm∂ · ∂ + x · x] Ψ = EΨ, (28)

which has an SOq(m) symmetry. In [6] this equation was first solved by constructing creation and
annihilation operators. Then it was shown that this equation could also be solved using an ansatz of the
form

Ψ = SIk g(x2),

where SIk is of degree k and satisfies ∂ · ∂SIk = 0, so it replaces the notion of a spherical harmonic.
The Schrödinger equation (28) then led to the following equation (we use an unimportant different
normalization of the energy)[

−qm+2kx2(∂q
2

x2)2 − [
m

2
+ k]q2∂

q2

x2 +
x2

(q + 1)2

]
g(x2) =

E

q + 1
g(x2). (29)

In this equation x2 can be treated as a normal variable, so we take r2 = x2 and g has to satisfy a
q-difference equation. By substituting g(x2) = f(r) and calculating

∂q
2

x2g(x2) =
g(q2x2)− g(x2)

(q2 − 1)x2

=
1

(q + 1)r
f(qr)− f(r)

(q − 1)r

we find that equation (29) leads to

1
q + 1

[
−qm+2k−1(∂qr )2 − [m+ 2k − 1]q

1
r
∂qr + r2

]
f(r) = Ef(r). (30)

This equation was studied in [17] and [18]. With the q-deformed Laplace operator in definition 3 it is
possible to put this equation into a Schrödinger equation completely determined by q-analysis, without
quantum variables. By lemma 7, the equation (30) for f(r) is equivalent with

1
q + 1

[
−∆q + r2

]
f(r)Hk = Ef(r)Hk, (31)

for Hk an arbitrary spherical harmonic. So, the entire quantum system in q-Euclidean space can be
replaced by the q-Schrödinger equation in undeformed space,

1
q + 1

[
−∆q + r2

]
Ψ(x) = EΨ(x).

The dimension of the space of spherical harmonics does not depend on q, so dimSIk = dimHk, see
[6, 7, 19, 29, 30]. This means the energy eigenvalues and multiplicities of more general Schrödinger
equations 1

q+1 [−∆q + V (r)] Ψ(x) = EΨ(x) are equal to those of the corresponding Schrödinger equations
in quantum Euclidean space. This spectrum can be found using separation of variables and the results in
[8]. As an example we consider the free particle ∆qψ(x) = −l2ψ(x) as in [29]. The q-difference equation[

qm+2k−1(∂qr )2 + [m+ 2k − 1]q
1
r
∂qr

]
f(r) = −l2f(r)

with f an even function is solved by

f(r) =
∞∑
n=0

(−1)n

ΓQ(n+ 1)ΓQ(m2 + k + n)

(
lr

q + 1

)2n

.
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This corresponds to the q-Bessel functions introduced by Jackson,

Hk(x)
rk+m

2 −1
Jqm

2 +k−1(lr).

The odd case leads to the q-Neumann functions, see [29].

5 q-integration

5.1 One dimensional case

The following lemma about one dimensional q-integration follows from straightforward calculations.

Lemma 10. For q < 1, k ∈ N and a, b, c ∈ R, the following relations holds,

(i)
∫ bk

ak
dqkt

k f(t) = [k]q
∫ b

a

dqt f(t)tk−1

(ii)
∫ b

a

dqt f(ct) =
1
c

∫ cb

ca

dqt f(t)

(iii)
∫ q−ka

0

dqt f(t) =
∫ a

0

dqt f(t) + (1− q)a
k∑
i=1

f(aq−i)q−i.

For the sequel we will need the q-integral of eQ(−t2) with Q = q2. First we need the following lemma.

Lemma 11. The zeroes of the exponentials defined in (7) and (8) are given by

Eq(
qk+1

1− q
) = 0 if q > 1 and

eq(
q−k

q − 1
) = 0 if q < 1

for k ∈ N.

Proof. We start from the q-difference property (9) of the q-exponential

Eq(qu) = (1 + (q − 1)u)Eq(u).

This implies that Eq(qu) = 0 if and only if either Eq(u) = 0 or u = 1
1−q . So we obtain Eq( q

k+1

1−q ) = 0
for all k ∈ N. We still have to prove that these are the only possible zeroes. If we assume Eq(t) = 0
with t 6= qk+1

1−q then this would imply, since limj→∞ q−jt = 0, that Eq(0) = 0. This is not the case as
formula (7) implies Eq(0) = 1. The second claim can be found immediately by making the substitution
q → q−1.

Using lemma 10, lemma 11 and integral representation (10) we can calculate the q-analogue of∫
R dt t

ν−1 exp(−t2). This result can also be found in [1].

Lemma 12. For q < 1 and with λQ =
√

1
1−Q , the following holds

∫ λQ

−λQ
dqt t

ν−1 eQ(−t2) =
2

q + 1
Q
ν
2 ΓQ(

ν

2
).
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5.2 q-integration in Rm

One dimensional q-integration is defined in equation (5). The aim of this section is to generalize this
concept to higher dimensions, corresponding to the q-deformation of the vector derivative. This means
we want analogues of equation (6). In classical Clifford analysis, these are given by Cauchy-type formulae
in higher dimensions, see [14, 15, 31, 32]. In this section we will always assume q < 1. Before we define
q-integration in Rm we repeat a well-known fact about the Γ-operator. For f and g two Clifford valued
differentiable functions ∫

Sm−1
dξ (Γf)g =

∫
Sm−1

dξ f(Γg).

This equation together with the series expansion of qΓ yields

Lemma 13. For f and g two Clifford valued analytic functions,∫
Sm−1

dξ (qΓf) g =
∫

Sm−1
dξ f (qΓg).

Now we define our q-integration on Rm. There have been made other approaches to generalize Jackson’s
q-integration to higher dimensions (see [7, 30, 33, 34]), but those are integrations over quantum variables,
while we use a q-integration over commuting variables. One approach is based on Gaussian integration
and the necessity for a Stokes theorem ([7, 33]). Our approach is more closely related to integration over
the quantum Euclidean sphere ([30]), but as we will see, also satisfies Stokes theorem.

Definition 5. For every function f on the ball with radius R, Bm(R), for which the expression is finite,
the m-dimensional q-integral is given by∫

Bm(R)

fdqV (x) =
∫

Sm−1
dξ

∫ R

0

dqr r
m−1f,

with dqr the measure in (5).

We could also use the infinite Jackson q-integration (see [1, 2, 3]) to construct q-integration on entire Rm
but we will not need it here.

Remark 4. The function f only has to be defined on the spheres ∂Bm(qkR), k ∈ N for this integral to
be well defined. By considering all integrations on the balls Bm(ql) for l ∈ Z we obtain a mapping of
functions defined on {∂Bm(qk)|k ∈ Z} ⊂ Rm into functions defined on the set of points {qk|k ∈ Z}.

Applying lemma 10(ii) yields∫
Bm(R)

dqV (x)f(cx) =
1
cm

∫
Bm(cR)

dqV (x)f(x). (32)

Now we are ready to state and prove the Cauchy formula for the q-Dirac operator.

Theorem 5. (q-Cauchy formula)
For f and g two Clifford valued analytical functions on Bm(R), the following relation holds,∫

Bm(R)

dqV (x)
[
(qΓ∂qxf) g(qx)− f (∂qxg)

]
= Rm−2

∫
∂Bm(R)

dξ f(x)x g(x).

Proof. First we use equations (6), (3) and (4) to calculate∫ R

0

dqr ∂
q
r

[
rmf

1
x
g

]
= −Rm−1f(Rξ) ξ g(Rξ)
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=
∫ R

0

dqr [m]qrm−1f
1
x
g +

∫ R

0

dqr q
mrm∂qr (f)

1
qx
g(qx) +

∫ R

0

dqr q
mrmf∂qr (

1
x
g)

=
∫ R

0

dqr r
m−1f ([m]q + qm[E]q)

1
x
g + qm−1

∫ R

0

dqr r
m−1([E]qf)

1
x
g(qx).

The above, lemma 5 and lemma 13 lead to∫
Bm(R)

dqV (x) f (∂qxg) =
∫

Sm−1
dξ

∫ R

0

dqr r
m−1f

(
[m]q + qm[E]q + [−Γ]qqm+E) 1

x
g

= −Rm−1

∫
Sm−1

dξ f(Rξ) ξ g(Rξ)− qm−1

∫
Bm(R)

dqV (x)([E]qf)
1
x
g(qx)

+ qm
∫

Sm−1
dξ

∫ R

0

dqr r
m−1([−Γ]qf)

1
qx
g(qx)

= −Rm−2

∫
∂Bm(R)

dξ f(x)x g(x) + qm−1

∫
Bm(R)

dqV (x)
1
x

(q−Γ([E + Γ]q)f)g(qx)

= −Rm−2

∫
∂Bm(R)

dξ f(x)x g(x) +
∫

Bm(R)

dqV (x) (qΓ(∂qx)f) g(qx).

This concludes the proof.

As a special case of this theorem we obtain the generalization of formula (6) to the m-dimensional case.

Corollary 1. For g a Clifford valued analytical function on Bm(R), the following Cauchy-formula holds,∫
Bm(R)

dqV (x) (∂qxg) = −Rm−2

∫
∂Bm(R)

dξ x g(x).

When we take g scalar, the formula in this corollary falls apart into formulas for the q-partial derivatives
Di in formula (25). In particular, for a function which vanishes on ∂Bm(R), corollary 1 implies∫

Bm(R)

dqV (x)Dig = 0.

This shows the link with the Gaussian integration method in [7] and [33]. The q-partial derivatives Di

take the place of the derivatives with respect to the quantum variables.
The term qΓ which appears in theorem 5 is dropped when we consider the Laplace operator.

Corollary 2. For f and g two Clifford valued analytical functions on Bm(R) with g = 0 = ∂qxg on
∂Bm(R), ∫

Bm(R)

dqV (x) f(qx) (∆qg) =
∫

Bm(R)

dqV (x) (∆qf) g(qx).

Proof. We start by putting f = h and using theorem 5,∫
Bm(R)

dqV (x)h(qx) (∂qx∂
q
xg) = −

∫
Bm(R)

dqV (x) qΓ∂qxqEf(x) (qE∂qxg),

where the surface term vanished because (∂qxg) = 0 on the boundary. Using formula (32), lemma 10(iii)
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with (∂qxg)(Rξ) = 0 and theorem 5 then leads to∫
Bm(R)

dqV (x)h(qx) (∂qx∂
q
xg) = −q

∫
Bm(R)

dqV (x) qE
[
qΓ∂qxh(x) (∂qxg)

]
= − 1

qm−1

∫
Bm(qR)

dqV (x) qΓ∂qxh(x) (∂qxg)

= − 1
qm−1

∫
Bm(R)

dqV (x) qΓ∂qxh(x) (∂qxg)

=
1

qm−1

∫
Bm(R)

dqV (x) qΓ∂qxqΓ∂qxh(x) g(qx)

=
1

qm−1

∫
Bm(R)

dqV (x) qΓqm−1−Γ∂qx∂
q
xh(x) g(qx).

The surface term in the q-Cauchy theorem was again zero because g = 0. The q-Laplace operator is
scalar, so ∆q = ∆q and the proposed formula is obtained.

6 Hermite polynomials

6.1 One dimensional case

A lot of approaches have been used to study q-deformed versions of the Hermite polynomials, see e.g.
[1, 11, 12, 13]. Because of the different definitions and normalizations in the literature we give a short
overview of the q-Hermite polynomials. We choose a normalization such that limq→1H

q
k(t) = Hk(t), with

Hk the classical Hermite polynomials. The starting point is the q-Hermite’s equation of Exton, see [12].
This leads to a recursion relation, which is mostly used to define q-Hermite polynomials. We will also
calculate the creation and annihilation operators and derive an orthogonality property. Most of these
results can be found in [1].

Definition 6. The q-Hermite polynomial Hq
k is the polynomial of the form

Hq
k(t) =

bk/2c∑
j=0

ajkt
k−2j ,

with a0
k = (q + 1)k, which is an eigenvector of the q-Hermite’s equation

[(∂qt )2 − (q + 1)t∂qt ]f(t) = −(q + 1)λf(q t).

From the definition we immediately find that the eigenvalues are

λk = [k]qq−k.

The exact form of Hq
k is

Hq
k(t) =

bk/2c∑
j=0

(q + 1)k−j
[k]q!

[k − 2j]q!
tk−2j

[−2j]q[−2j + 2]q · · · [−2]q
. (33)

Taking the limit q → 1 we find Hk(t) =
∑bk/2c
j=0 (−1)j2k−2j k!

(k−2j)!j! t
k−2j . Now we show the recursion

formula and the annihilation operator. The simplest way to prove these is by considering the coefficients.

Theorem 6. The following recursion formula holds for the polynomials introduced in definition 6,

(i) Hq
k+1 = (q + 1)tHq

k − (q + 1)[k]qqk+1Hq
k−1

when k > 0. The annihilation operator for the q-hermite polynomials is ∂qt ,

(ii) ∂qtH
q
k(t) = (q + 1)[k]qH

q
k−1(t).
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In the classical case the creation operator can be obtained from either the combination of the annihilation
operator and the recursion formula or the combination of the annihilation operator and the Hermite’s
equation. In the q-deformed case these two approaches lead to different creation operators.

Theorem 7. For Hq
k as defined in definition 6 the following relations hold for k > 0,

(i) Hq
k(t) = ((q + 1)t− qk∂qt )Hq

k−1(t)

and

(ii) Hq
k(qt) = qk((q + 1)t− ∂qt )Hq

k−1(t).

For our purpose we use the following q-exponential based on formula (8) with Q = q2,

eQ(u) =
∞∑
j=0

qj(j−1) uj

[j]q2 !
. (34)

This exponential satisfies ∂qt
[
eQ(−t2)

]
= −(q + 1)teQ(−q2t2). Together with theorem 7(ii) and Leibniz

rule (3) this yields

Hq
k(qt) eQ(−q2t2) = −qk ∂qt [Hq

k−1(t) eQ(−t2)]. (35)

Now we have all the necessary tools to prove the orthogonality relation for the q-Hermite polynomials.
The proof can be found in [1] or from the steps in the proof of theorem 10 using theorem 6(ii) and formula
(35).

Theorem 8. When q < 1, the q-hermite polynomials are orthogonal with respect to the inner product
〈f |g〉 =

∫ λQ
−λQ dqt fgeQ(−t2) with λQ2 = 1

1−Q ,∫ λQ

−λQ
dqtH

q
k(t)Hq

l (t)eQ(−t2) = δkl2(q + 1)k−1q
1
2 (k+1)(k+2)[k]q!ΓQ(

1
2

).

Remark 5. The inner product defined above is only positive definite if one considers functions defined
on the set of points {±λQqj |j ∈ N}.

6.2 Clifford-Hermite polynomials

Inspired by the q-Hermite’s equation in section 6.1 and the q-Dirac operator we define the q-deformed
Clifford-Hermite polynomials as solutions of a q-Clifford-Hermite’s equation. The Clifford-Hermite poly-
nomials were introduced in [20]. We will not repeat their properties here, as they can be found from
taking the limit q → 1.

Definition 7. The q-Clifford-Hermite polynomials are of the form

Hq
j,m,k(x)Mk =

bj/2c∑
i=0

aj,ki xj−2iMk. (36)

with Mk a spherical monogenic of degree k. They are eigenvectors of the q-Clifford Hermite’s equation

[∆q − (q + 1)x∂qx]f(x) = −(q + 1)λf(qx).

The normalization is given by aj,k0 = (q + 1)j.

In this section we will use the notation 2β = m + 2k, assuming that we take k fixed, and Q = q2. By a
quick calculation and theorem 1 we find that the eigenvalues are given by (j = 2t or j = 2t+ 1)

λ2t,m,k = [2t]qq−2t−k = (q + 1)[t]QQ−t−k/2

λ2t+1,m,k = [2t+m+ 2k]qq−2t−1−k = (q + 1)[t+ β]QQ−t−(k+1)/2.

The explicit form of the q-Clifford-Hermite polynomials is given by
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Lemma 14. The coefficients of the Clifford-Hermite polynomials in definition 7 are given by

a2t,k
i = (q + 1)2tQ

1
2 i(i+1)

(
t

i

)
Q

[t− 1 + β]Q[t− 2 + β]Q · · · [t− i+ β]Q

and

a2t+1,k
i = (q + 1)2t+1Q

1
2 i(i+1)

(
t

i

)
Q

[t+ β]Q[t− 1 + β]Q · · · [t− i+ 1 + β]Q.

Proof. First we calculate, using equation (24)

(∂qx)2a2t,k
i−1x

2t−2i+2Mk = [2t− 2i+ 2]q[2t− 2i+m+ 2k]qa
2t,k
i−1x

2t−2iMk

and using lemma 1

x∂qxa
2t,k
i x2t−2iMk = [2t− 2i]qa

2t,k
i x2t−2iMk.

Substituting these results and λ2t,m,k = [2t]qq−2t−k in the differential equation leads to

[2t− 2i+ 2]q[2t− 2i+m+ 2k]qa
2t,k
i−1 = (q + 1)a2t,k

i ([2t]qq−2t−kq2t−2i+k − [2t− 2i]q)

= (q + 1)a2t,k
i

q2t−2i − q−2i − q2t−2i + 1
q − 1

= (q + 1)2a2t,k
i

Q−i(Qi − 1)
Q− 1

,

or

a2t,k
i = Qi

[t− i+ 1]Q[t− i+ β]Q
[i]Q

a2t,k
i−1 .

Iterating this yields a2t,k
i . The a2t+1,k

i are calculated in the same way.

Using the Q-Gamma function leads to the explicit form of the q-Clifford-Hermite functions,

Hq
2t,m,k(x)Mk = (q + 1)2t

t∑
i=0

Q
1
2 i(i+1)

(
t

i

)
Q

ΓQ(t+m/2 + k)
ΓQ(t− i+m/2 + k)

x2t−2iMk

and

Hq
2t+1,m,k(x)Mk = (q + 1)2t+1

t∑
i=0

Q
1
2 i(i+1)

(
t

i

)
Q

ΓQ(t+ 1 +m/2 + k)
ΓQ(t+ 1− i+m/2 + k)

x2t−2i+1Mk.

We only defined the ΓQ-function for Q < 1, but for Q > 1 the notation above can still be used to denote
[t+m/2+k]Q!

[t−i+m/2+k]Q! . The q-Clifford-Hermite polynomials are connected with a q-deformation of the Laguerre
polynomials in [1]. We define Lαt (·|Q) by

Hq
2t,m,k(x) = (q + 1)2t[t]Q!L

m
2 +k−1
t (r2|Q) (37)

Hq
2t+1,m,k(x) = (q + 1)2t+1[t]Q!xL

m
2 +k
t (r2|Q). (38)

These Laguerre polynomials are also related to those in [21, 22], as we will show later. In particu-
lar we obtain a q-deformation of the classical relation between one dimensional Hermite and Laguerre
polynomials,

Hq
2t(u) = (−1)t(q + 1)2t[t]q2 !L−

1
2

t (u2|q2).
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Lemma 15. The q-Clifford-Hermite polynomials satisfy the following relation

∂qxH
q
j,m,kMk = C(j,m, k)Hq

j−1,m,kMk

with C(2t,m, k) = (q + 1)2[t]Q and C(2t+ 1,m, k) = (q + 1)2[t+ β]Q.

Proof. For the even case the lemma follows from considering the coefficients,

∂qxa
2t,k
i x2t−2iMk = (q + 1)[t− i]Qa2t,k

i x2t−1−2iMk

= (q + 1)2[t]Qa
2t−1,k
i x2t−1−2iMk.

The odd case is calculated similarly.

The q-Clifford-Hermite polynomials can also be calculated using a recursion formula.

Lemma 16. The q-Clifford-Hermite polynomials satisfy the recursion formula

Hq
j+1,m,kMk = (q + 1)xHq

j,m,kMk +D(j,m, k)Hq
j−1,m,kMk

with D(2t,m, k) = (q + 1)2Qt+β [t]Q and D(2t+ 1,m, k) = (q + 1)2Qt+1[t+ β]Q.

Proof. We prove this again by looking at the coefficients. They have to satisfy

aj+1,k
i = (q + 1)aj,ki +D(j,m, k)aj−1,k

i−1 .

For j = 2t we obtain

1 = (q + 1)
a2t,k
i

a2t+1,k
i

+D(2t,m, k)
a2t−1,k
i−1

a2t+1,k
i

=
[t− i+ β]Q

[t+ β]Q
+D(2t,m, k)

[−i]Q
(−1)(q + 1)2[t]Q[t+ β]Q

=
1

[t+ β]Q

(
[t− i+ β]Q −Qt+β [−i]Q

)
.

The odd case is proven similarly.

Similar to the one dimensional case there are two creation operators.

Theorem 9. The q-Clifford-Hermite polynomials satisfy the following two relations

(i)Hq
j,m,kMk =

[
qσj∂qx + (q + 1)x

]
Hq
j−1,m,kMk

with σ2t = 2t and σ2t+1 = 2t+ 2k +m and

(ii)Hq
j,m,k(qx)Mk = qj

[
∂qx + (q + 1)x

]
Hq
j−1,m,k(x)Mk.

Proof. These two equations can be found from combining lemma 16 with lemma 15 and from combining
lemma 15 with definition 7.

Using the definition of the q-exponential (34) and the Leibniz rule in lemma 6 yields

∂qxeQ(x2) = eQ(q2x2)[∂qx + (q + 1)x], (39)

so theorem 9(ii) can be written as

Hq
j,m,k(qx)Mk eQ(q2x2) = qj ∂qxH

q
j−1,m,k(x)Mk eQ(x2). (40)
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Theorem 10. For q < 1, with Rmq = Bm(λQ) and λ2
Q = 1

1−Q , the q-Clifford-Hermite polynomials are
orthogonal with respect to the inner product

〈f |g〉 =
∫

Rmq
dqV (x)

[
f g eQ(x2)

]
0
.

For the even Clifford-Hermite polynomials this means∫
Rmq

dqV (x)
[
Hq

2j,m,kM
(p)
k Hq

2t,m,kM
(r)
l eQ(x2)

]
0

= δjtδklδpr(q + 1)4j−1Q(j+1)(j+β)[j]Q!ΓQ(j + β),

for the odd case∫
Rmq

dqV (x)
[
Hq

2j+1,m,kM
(p)
k Hq

2t+1,m,kM
(r)
l eQ(x2)

]
0

= δjtδklδpr(q + 1)4j+1Q(j+1)(j+β+2)[j]Q!ΓQ(j + β + 1)

and for the mixed case ∫
Rmq

dqV (x)
[
Hq

2j+1,m,kM
(p)
k Hq

2t,m,kM
(r)
l eQ(x2)

]
0

= 0.

Proof. Equation (20) implies that k = l is necessary for the Clifford-Hermite polynomials not to be
orthogonal. Using equation (32) and equation (40) yields∫

Rmq
dqV (x)Hq

j,m,kMkH
q
t,m,kMk eQ(x2) = qm+2k

∫
q−1Rmq

dqV (x)Hq
j,m,k(qx)MkH

q
t,m,k(qx)Mk eQ(q2x2)

= qm+2k+t

∫
q−1Rmq

dqV (x)Hq
j,m,k(qx)Mk

(
∂qxH

q
t−1,m,k(x)Mk eQ(x2)

)
.

Now we use theorem 5 with eQ(−Q−1 1
1−Q ) = 0 (lemma 11) and lemma 15,

= qm+2k+t

∫
q−1Rmq

dqV (x)
[
qΓ∂qxH

q
j,m,k(qx)Mk

]
Hq
t−1,m,k(qx)qkMk eQ(q2x2)

= qm+3k+t+1C(j,m, k)
∫
q−1Rmq

dqV (x)
[
qΓHq

j−1,m,k(qx)Mk

]
Hq
t−1,m,k(qx)Mk eQ(q2x2)

= qk+t+1C(j,m, k)
∫

Rmq
dqV (x)

[
qΓHq

j−1,m,kMk

]
Hq
t−1,m,kMk eQ(x2).

Substituting equation (18) for the even case yields

〈Hq
2j,m,kMk|Hq

2t,m,kMk〉 = Qt+
m
2 +k(q + 1)2[j]Q〈Hq

2j−1,m,kMk|Hq
2t−1,m,kMk〉

and for the odd case

〈Hq
2j+1,m,kMk|Hq

2t+1,m,kMk〉 = Qt+1(q + 1)2[j + k +
m

2
]Q〈Hq

2j,m,kMk|Hq
2t,m,kMk〉.

The theorem follows from iterating these results and lemma 12,∫
Rmq

dqV (x)
[
M

(p)
k M

(r)
k eQ(x2)

]
0

=
∫ ∞

0

dqr r
m+2k−1eQ(−r2)δpr

=
1

q + 1
QβΓQ(β)δpr.
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Finally we take a closer look at the even Clifford-Hermite polynomials Hq
2j,m,kMk. Because Mk ∈ Hk,

Mk is of the form
∑
AH

A
k aA with aA ∈ R0,m and HA

k scalar spherical harmonics. From lemma 15 we
find that ∆qH

q
2j,m,kMk = −C(2j,m, k)C(2j − 1,m, k)Hq

2j−2,m,kMk. Because ∆q and H2j,m,k are scalar
this formula also holds for the each scalar part Hq

2j,m,kH
A
k . We define the scalar q-Clifford-Hermite

polynomials as Hq
2j,m,kHk for Hk a scalar spherical harmonic, the annihilation operator is given by

∆qH
q
2j,m,kHk = −(q + 1)4[j]Q[j +

m

2
+ k − 1]QH

q
2j−2,m,kHk. (41)

In order to obtain the creation operator we apply theorem 9(ii),

H2j,m,kMk = qk−Eq2j
[
∂qx + (q + 1)x

]
qk−Eq2j−1

[
∂qx + (q + 1)x

]
H2j−2,m,kMk.

Since this operator is again scalar, see lemma 3, this also holds for the scalar q-Clifford-Hermite polyno-
mials,

H2j,m,kHk = −Q2j+k−E−1
[
∆q − 4E + q2(q + 1)2r2

]
H2j−2,m,kHk. (42)

6.3 Generalized Laguerre polynomials

In the previous section we found q-deformed generalized Laguerre polynomials from the relation

Hq
2t,m,k(x) = (q + 1)2t[t]Q!L

m
2 +k−1
t (r2|Q).

For a general α > −1 we define the Q-Laguerre polynomials as

Lαt (u|Q) =
t∑
i=0

Q
1
2 (t−i)(t−i+1) (−u)i

[t− i]Q![i]Q!
ΓQ(t+ α+ 1)
ΓQ(i+ α+ 1)

.

These are the second type of Laguerre polynomials considered in [1]. When we make the substitution
Q→ q−1, using [k]q−1 = q1−k[k]q, we find

Lαt (u|q−1) =
t∑
i=0

q−
1
2 (t−i)(t−i+1) (−u)i

[t− i]q−1 ![i]q−1 !
[t+ α]q−1 !
[i+ α]q−1 !

= q−
1
2 t(t+1)−αt

t∑
i=0

qi(i+α) (−u)i

[t− i]q ![i]q !
[t+ α]q !
[i+ α]q !

.

These are the q-Laguerre polynomials in [22], or with a different normalization in [21]. In [1] both the
q-Laguerre polynomials, which are connected with the substitution (q ↔ q−1) were studied. We could
also have used a second type of q-Hermite polynomials (see [1]) to generalize to the Clifford setting to
obtain the q-Laguerre polynomials in [22]. The Q-Laguerre polynomials can be defined as the solution of
the Q-difference equation (see [1])

Qα+1u(∂Qu )2Lαt (u|Q) + ([α+ 1]Q − u)∂Qu Lαt (u|Q) = [−t]QLαt (Qu|Q). (43)

For α = m
2 + k − 1 this is equivalent to the differential equation in definition 7. Equation (43) can be

written using the q-exponential

∂Qu
(
eQ(−u)uα+1∂Qu Lαt (u|Q)

)
= [−t]QuαeQ(−Qu)Lαt (Qu|Q). (44)

Using this we can prove the orthogonality of the Q-Laguerre polynomials, which is another way to prove
the orthogonality of the Clifford-Hermite polynomials.
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Theorem 11. For Q < 1 the Q-Laguerre polynomials for a fixed α > −1 are orthogonal with respect to
the inner product

〈f |g〉α =
∫ 1

1−Q

0

dQuu
αf(u)g(u)eQ(−u).

Proof. Equation (44) leads to the following relation

∂Qu
[
Lαj (u|Q)eQ(−u)uα+1∂Qu Lαt (u|Q)− Lαt (u|Q)eQ(−u)uα+1∂Qu Lαj (u|Q)

]
= ([−t]Q − [−j]Q)uαLαj (Qu|Q)eQ(−Qu)Lαt (Qu|Q).

The orthogonality then follows from (6). For α = m
2 + k − 1 the result can also be found from theorem

10 and lemma 10(i).

Finally we construct a family of realizations of Uq (su(1|1)) for which the q-Laguerre polynomials will be
the eigenvectors of their representations. We define

A =
Q−E−m2

[
∆q − 4E + q2(q + 1)2r2

]
(q + 1)2

and B =
∆q

(q + 1)2

and write equations (42) and (41) in terms of the q-Laguerre polynomials,

AL
m
2 +k−1
j−1 (r2|Q)Hk = −[j]QQ1−2j−k−m2 L

m
2 +k−1
j (r2|Q)Hk

and

BL
m
2 +k−1
j (r2|Q)Hk = −[j +

m

2
+ k − 1]QL

m
2 +k−1
j−1 (r2|Q)Hk.

We define C = [A,B]Q, from its definition we find

CL
m
2 +k−1
j (r2|Q)Hk = Q1−2j−k−m2

(
[j +

m

2
+ k − 1]Q[j]Q −Q−1[j +

m

2
+ k]Q[j + 1]Q

)
L
m
2 +k−1
j (r2|Q)Hk

= Q1−2j−k−m2

(
Q2j+m

2 +k−1 + 1−Q2j+m
2 +k −Q−1

(Q− 1)2

)
L
m
2 +k−1
j (r2|Q)Hk

= −Q−2j−k−m2 [2j + k +
m

2
]QL

m
2 +k−1
j (r2|Q)Hk.

These calculations yield

(AC −Q2CA)L
m
2 +k−1
j (r2|Q)Hk = (Q+ 1)AL

m
2 +k−1
j (r2|Q)Hk

and

(CB −Q2BC)L
m
2 +k−1
j (r2|Q)Hk = (Q+ 1)BL

m
2 +k−1
j (r2|Q)Hk.

Since the scalar Clifford-Hermite polynomials constitute a basis for R[x1, · · · , xm] (lemma 1) this suffices
to prove the following su(1|1)q-relations,

[A,B]Q = C

[A,C]Q2 = (Q+ 1)A
[C,B]Q2 = (Q+ 1)B.

Hence we obtain a family of representations of su(1|1)q. This fits into the theory of relations between
representations of quantum algebras and q-special functions, see e.g. [4, 35, 36]. For every k,m ∈ N, we
define the operator Amk on the space of polynomials in one variable R[t] by

[Amk f(t)] (t = r2)Hk(x) = Af(r2)Hk(x)

with x ∈ Rm and Hk an arbitrary spherical harmonic of degree k. The operators Bmk and Cmk are defined
similarly.
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Theorem 12. For every k,m ∈ N, the set of operators {Amk , Bmk , Cmk } generate the su(1|1)q-quantum
algebra. The basis {L

m
2 +k−1
j (t|Q)|j ∈ N} of R[t] is the set of eigenvectors for this representation of

su(1|1)q.

The su(1|1)q algebra appearing here can be linked with the version of UQ (su(1|1)) in [36]. Define J0 by
the relation

C = −Q−2J0 [2J0]Q,

this implies J0L
m
2 +k−1
j (r2|Q)Hk = 1

2

(
2j + m

2 + k
)
L
m
2 +k−1
j (r2|Q)Hk, so

[J0, A] = A and [J0, B] = −B.

By defining J+ = QJ0A and J− = qB we calculate

[J−, J+] = qBQJ0A− qQJ0AB

= qQJ0 (QBA−AB)
= −qQJ0C

=
QJ0 −Q−J0

Q1/2 −Q−1/2
.

This relation together with [J0, J±] = ±J±, shows that J± and J0 generate the UQ (su(1|1)) algebra in
[36].

7 Conclusion

Our aim was to extend the existing q-calculus with a theory of partial derivatives in higher dimensions
and a q-Laplace operator acting on functions in commuting variables. This was done by imposing four
natural axioms that a q-Dirac operator should satisfy and led to a unique q-Dirac operator. Since this is
vector operator, it implies the definition of q-partial derivatives. The q-Laplace operator was defined as
minus the square of the q-Dirac operator and is scalar.
The q-Dirac operator and the vector variable generate the quantum algebra osp(1|2)q, the q-Laplace
operator and the norm squared generate sl2(R)q, the even subalgebra of osp(1|2)q. This sl2(R)q al-
ready appeared in other q-calculus problems and in quantum Euclidean space. Since the q-Dirac and
q-Laplace operator still possess their Spin(m) and SO(m) invariance, we obtained the Howe dual pairs
(Spin(m), osp(1|2)q) and (SO(m), sl2(R)q). This can be a starting point for the study of general Howe
duality including quantum algebras and quantum groups.
The q-Laplace operator defines a q-Schrödinger equation. It is shown that the SO(m)-invariant q-
Schrödinger equation on undeformed Euclidean space is equivalent with the SOq(m)-invariant Schrödinger
equation on quantum Euclidean space. This is an example of the interaction between quantum groups
and q-calculus.
The q-difference equation for q-Hermite polynomials and the q-Dirac operator lead to a q-deformation
of the Clifford-Hermite equation. The corresponding q-Clifford-Hermite polynomials have creation and
annihilation operators and satisfy a recursion formula. These properties and a q-Cauchy formula lead
to an orthogonality relation for the q-Clifford-Hermite polynomials. The q-Clifford-Hermite polynomials
can be expressed in terms of the q-Laguerre polynomials. This identification leads to a realization of the
suq(1|1) algebra action on R[t]. The weight vectors of this representation are q-Laguerre polynomials.
This gives a new q-calculus interpretation to the appearance of quantum algebras in the representation
theory of q-special functions.
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