In this paper we introduce the classical Segal-Bargmann transform starting
from the basis of Hermite polynomials and extend it to Clifford algebra-valued
functions. Then we apply the results to monogenic functions and prove that the
Segal-Bargmann kernel corresponds to the kernel of the Fourier-Borel transform
for monogenic functionals. This kernel is also the reproducing kernel for the
monogenic Bargmann module.Comment: 11 page