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Abstract

In this paper we consider a particularly important case of 3D monogenic polynomials that are
isomorphic to the integer powers of one complex variable (called pseudo-complex powers or
pseudo-complex polynomials, PCP). The construction of bases for spaces of monogenic poly-
nomials in the framework of Clifford Analysis has been discussed by several authors and from
different points of view. Here our main concern are numerical aspects of the implementation
of PCP as bases of monogenic polynomials of homogeneous degree k. The representation
of the well known Fueter polynomial basis by a particular PCP-basis is subject to a detailed
analysis for showing the numerical efficiency of the use of PCP. In this context a modification
of the Eisinberg-Fedele algorithm for inverting a Vandermonde matrix is presented.
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1 Introduction

To understand the meaning and significance of pseudo-complex powers in higher dimensional Euclidean spaces,
we briefly explain some steps from the recent past that led us to this subject.

The authors initiated recently ([7, 8, 9, 21]) the use of PCP as building blocks for Clifford-valued homoge-
neous polynomials in the Clifford Algebra C`0,n. The main differences to other approaches (cf. [20]) consist in
fixing the PCP-basis of monogenic polynomials of homogeneous degree k by using a recursively (with respect
to k) defined algorithm for the choice of a parameter set among all vectors in Sn. This means, that in the
3D-case the parameter set is related to the primitive roots of unity and can be visualized in the complex plane.
Therefore PCP opened the way to some new insights into the connection of Hypercomplex Function Theory
and Number Theory.

We stressed in [7], by presenting two examples of different choices of the parameter set, also some com-
putational advantages of 3D-PCP in comparison with the generalized powers generated by the well known
Fueter variables. Among other problems, we discussed in [9] the applications of PCP to some problems of
combinatorial nature. In [21] we studied their role in 3D Appell systems and extended the obtained results to
the 4D quaternionic case in [8].

All studies were mainly motivated by two observations. The fact that, apart from the concrete parameter
choice, the PCP obey for a fixed homogeneous degree k all the same structure, isomorphic to the structure of zk

of the complex variable z. This leads immediately to essentially reduced numerical costs for their construction.
From the other side, it led us to interesting studies about different parameter choices and its closed connection
with the primitive roots of unity as mentioned before. Moreover, the freedom of the parameter choice implies
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that PCP can play an important role for the application of bijective methods from enumerative and algebraic
combinatorics (see [9]).

The goal of the present paper is now a detailed discussion of different numerical aspects of 3D-PCP. After
introducing in Sect. 2 the necessary basic notations and results of Hypercomplex Function Theory needed for
use in the subsequent sections, we revisit in Sect. 3 the theory of PCP by presenting and proving some of their
properties. In Sect. 4 we propose an efficient algorithm to obtain PCP which takes advantages of their relation
to the integer powers of one complex variable. This means that the algorithm uses, in its most demanding
steps, only complex arithmetic. A modification of the Eisinberg-Fedele algorithm for inverting a Vandermonde
matrix is presented in Sect. 5, in order to obtain an efficient procedure to derive the series expansion of any
reduced quaternion valued monogenic function in terms of PCP.

2 Basic Notations and Results

Let {1, e1, e2, e3} be an orthonormal basis of the Euclidean vector space R4 with the (quaternionic) product
given according to the multiplication rules

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3.

This non-commutative product generates the well known algebra of real quaternions H. For a quaternion of
the form x = x0 + e1x1 + e2x2 + e3x3, the conjugate of x is x̄ = x0 − e1x1 − e2x2 − e3x3, the scalar part
of x is Scx := x0 = 1

2 (x+ x̄) and the vector part of x is x := x1e1 +x2e2 +x3e3 = 1
2 (x− x̄). The norm |x|

of x is defined by |x|2 = xx̄ = x̄x = x2
0 + x2

1 + x2
2 + x2

3 and it immediately follows that each non-zero x ∈ H
has an inverse given by x−1 = x̄

|x|2 .

Considering the subset
A := spanR{1, e1, e2} ⊂ H,

the real vector space R3 can be embedded in A by the identification of each element x = (x0, x1, x2) ∈ R3

with the so-called paravector or reduced quaternion x = x0 + x1e1 + x2e2 ∈ A.
In what follows we consider H-valued functions f defined in some open subset Ω ⊂ R3, which are contin-

uously real differentiable.
To call attention to its relation to the complex Wirtinger derivatives, we use for a generalized Cauchy-

Riemann operator in R3 the notation

∂ :=
1

2
(∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ e2

∂

∂x2
.

Functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left monogenic (resp. right monogenic).
We suppose that f is hypercomplex differentiable in Ω in the sense of [15] and [20], i.e. has a uniquely defined
areolar derivative f ′ in each point of Ω. Then f is real differentiable and f ′ can be expressed by real partial
derivatives as f ′ = ∂f where analogously to the generalized Cauchy-Riemann operator we use ∂ := 1

2 (∂0−∂x)
for the conjugate Cauchy-Riemann operator. Since a hypercomplex differentiable function belongs to the kernel
of ∂, it follows that in fact f ′ = ∂0f = −∂xf similar to the complex case.

A second structure of R3 different from that given by the set of paravectors A consists in the following
isomorphism:

R3 ∼= H2 = {~z = (z1, z2) : zk = xk − x0ek, x0, xk ∈ R; k = 1, 2},

where the variables z1 and z2 are reduced quaternions, usually called Fueter variables. For the next step we
apply

Definition 1 For ak ∈ H (k = 1, . . . , n), the symmetric ×-product is defined by

a1 × a2 × · · · × an =
1

n!

∑
π(i1,...,in)

ai1ai2 . . . ain (1)

where the sum runs over all permutations of (i1, . . . , in)
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together with the following convention: if the factor aj occurs µj-times in (1), we briefly write

a1 × · · · × a1︸ ︷︷ ︸
µ1

× · · · × an × · · · × an︸ ︷︷ ︸
µn

= a1
µ1 × · · · × anµn = ~a µ (2)

where µ = (µ1, . . . , µn), and set parentheses if the powers are understood in the ordinary way (see [20]).
It can be proved that the symmetric products zµ1

1 × z
µ2

2 are monogenic functions of homogeneous degree
µ1 + µ2 which take their values in A and are H-linearly independent (see [19, 20]). We list now several other
essential and well known properties of the so-called generalized powers (GP) of degree k.

Theorem 1 ([4, 19]) The generalized powers Gks := z1
k−s × z2

s, s = 0, . . . , k, form a basis of the H-linear
space of homogeneous monogenic H-valued polynomials of degree k.

Theorem 2 ([4, 19]) If f : Ω ⊂ R3 → H is a monogenic function, then the general form of the Taylor series
of f in the neighborhood of the origin is given by

f(z1, z2) =

∞∑
k=0

1

k!

k∑
s=0

(
k

s

)
∂kf(0)

∂xk−s1 ∂xs2
Gks . (3)

As is indicated in [16], the polynomials Gks satisfy the recursion formula

G0
0 = 1,

Gks =
1

k

{
(k − s)z1Gk−1

s + s z2Gk−1
s−1

}
, s = 0, . . . , k. (4)

and applying convention (2), the following binomial formula (see, e.g. [20]) can be derived:

(αz1 + βz2)k =

k∑
s=0

(
k

s

)
αk−sβszk−s1 × zs2, with α, β ∈ R. (5)

3 Pseudo-Complex Powers

The construction of bases for spaces of monogenic polynomials in the framework of Clifford Analysis has been
discussed by several authors and from different points of view. During the last decade, numerous papers with
emphasis on theoretical questions like their orthogonality or their relationship to Appell systems were published
[1, 3, 10, 13, 14, 18].

Here our main concern are numerical aspects of the implementation of special bases of monogenic poly-
nomials of homogeneous degree k. Concretely, in this section we are going to study a set of polynomials of
the form

Zks (x) = (x0 + ysis)
k, (6)

where
ys = αsx1 + βsx2 (7)

and
is = αse1 + βse2 (8)

for the particular choice

βs = (s+ 1)αs =
s+ 1√

1 + (s+ 1)2
; s = 0, . . . , k. (9)

We observe that since α2
s + β2

s = 1, it follows that i2s = −1 and therefore one can prove that the above
polynomials are monogenic polynomials isomorphic to the complex powers. To underline this fact we call such
polynomials pseudo-complex powers or pseudo-complex polynomials (PCP).

In the recent past, pseudo-complex powers have been considered by several authors in different contexts.
In [5] it was proved that homogeneous monogenic polynomials of the form

Hk
(ai,bi)

= (aiz1 + biz2)k, ai, bi ∈ R, i = 0, . . . , k
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form a basis of the H-linear space of homogeneous monogenic H-valued polynomials of degree k if and only if
a2
i + b2i = 1 and aibj − ajbi 6= 0, i, j = 0, ..., k. In [6], a complete set of pseudo-complex polynomials, having

prescribed properties was constructed. Later on, aspects of combinatorial nature were considered in [9] and
some computational aspects related to the explicit constructions of PCP were already discussed in [7]. The
idea of this paper is to study, in detail, PCP of the form (6)-(9), from a theoretical and computational point
of view.

For the sake of completeness and better understanding, we list and prove the main properties of the PCP
needed in this work.

Proposition 1 The PCP (6)-(9) can be written, in terms of the Fueter variables z1 and z2, as

Zks (x) = (αsz1 + βsz2)k(is)
k. (10)

Proof: Since Zks = (Z1
s )k and

Z1
s = (αsz1 + βsz2)is =

(
αs(x1 − x0e1) + βs(x2 − x0e2)

)
is

= (x0(−is) + x1αs + x2βs)is = x0 + (x1αs + x2βs)is

the result follows at once. �

Remark 1 Last property reveals that Zks = Hk
(αs,βs)(is)

k and therefore one can conclude that the set {Zks }ks=0

is also a basis of the H-linear space of homogeneous monogenic H-valued polynomials of degree k.

Consider now the vectors Z and G containing the k + 1 PCP and GP of degree k, respectively, i.e.

Z =


Zk0
Zk1

...
Zkk

 and G =


Gk0
Gk1
...
Gkk

 .

Proposition 2 The polynomials Zks and Gks are linked by the relation

Z = D1V (1, 2, . . . , k + 1)D2G,

where D1 and D2 are the diagonal matrices of order k + 1

D1 = diag
(
αk0i

k
0 , . . . , α

k
j i
k
j , . . . , α

k
ki
k
k

)
, D2 = diag

((
k
0

)
, . . . ,

(
k
j

)
, . . . ,

(
k
k

))
(11)

and Vn := V (1, 2, . . . , n) is the Vandermonde matrix of order n associated with the equidistant nodes
1, 2, . . . , n, i.e.

Vn = V (1, 2, . . . , n) =


1 1 1 . . . 1
1 2 22 . . . 2n−1

...
...

...
. . .

...
1 n n2 . . . nn−1

 . (12)

Proof: The use of Proposition 1 and the binomial formula (5) lead easily to the relation

Z =



(
k
0

)
αk0i

k
0

(
k
1

)
αk−1

0 β0i
k
0 · · ·

(
k
k

)
βk0 i

k
0(

k
0

)
αk1i

k
1

(
k
1

)
αk−1

1 β1i
k
1 · · ·

(
k
k

)
βk1 i

k
1

...
...

. . .
...(

k
0

)
αkki

k
k

(
k
1

)
αk−1
k βki

k
k · · ·

(
k
k

)
βkki

k
k


G
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or equivalently

Z =



ik0

ik1

. . .

ikk





αk0 αk−1
0 β0 · · · βk0

αk1 αk−1
1 β1 · · · βk1

...
...

. . .
...

αkk αk−1
k βk · · · βkk





(
k
0

)
(
k
1

)
. . . (

k
k

)


G.

Since αs 6= 0, s = 0, . . . , k one can write

Z =



ik0

ik1

. . .

ikk





αk0

αk1

. . .

αkk





1 β0

α0
· · · ( β0

α0
)k

1 β1

α1
· · · ( β1

α1
)k

...
...

. . .
...

1 βk

αk
· · · ( βk

αk
)k


D2G.

Thus
Z = D1V ( β0

α0
, . . . , βk

αk
)D2G

and the results follows now from βs

αs
= s+ 1 (cf. (9)). �

4 Numerical Aspects

We focus now on the implementation details of PCP of degree k. Our aim here is to show that, from the
computational point of view, these polynomials can be a good alternative to GP, since they can be computed
by a less time-consuming algorithm. It is clear that the computational time and effort needed to carry out
each polynomial depend on numerous parameters, such as the software used, the structure and complexity of
the polynomials, the technique/algorithm implemented for their calculation, among others.

The numerical experiments reported in this work were obtained by the use of the package [12] which
endow the Mathematica Quaternions package with the ability to perform operations on symbolic expressions
involving quaternion-valued functions. All simulations have been performed in Mathematica 9.0 (64-bit) on a
computer with Intel Xeon E5607 4C 2.26GHz/1066Mhz/8MB processors and 64GB of RAM.

Programming recursively makes it easier to write simple and elegant programs to obtain GP via (4).
However, when the degree k increases, computing GP in terms of recursion reveals one of the potential
drawbacks of recursive programs. The issue is that for the computation of GP of degree k, the value of some
of the GP of lower degree will be needed many times. This means that the time required to compute GP
grows exponentially with k.

We point out that PCP can also be computed by means of a recursive formula (see (6)-(9)), namely

Zks = Zk−1
s Z1

s , s = 0, . . . , k, Z0
s = 1, Z1

s = x0 + ysis. (13)

Both recursion solutions (4) and (13) are natural but inefficient, since many identical recursive calls are
made during any given calculation, i.e. both problems exhibit overlapping subproblems. This issue can be
observed in Fig. 1, where the CPU time, in seconds, is presented for both algorithms and for several values
of k. These values correspond to the CPU time required to constructing all the k + 1 linearly independent
polynomials of degree k of the form (4) and (13).

Problems having the overlapping subproblems property are almost always solved using dynamic program-
ming, a catch-all term for any algorithm in which the definition of a function is extended as the computation
proceeds (see [24]). Dynamic programming is a technique for avoiding the repeated computation of the same
values in a recursive program. Each value computed is immediately stored. If the value is needed again, it is
not computed but simply looked up in memory.
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Figure 1: CPU time: GP versus PCP - recursion algorithm (k = 2, . . . , 20).
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Figure 2: CPU time: GP versus PCP - recursion with result caching (k = 2, . . . , 40).

The ability to add rules to a function as the function executes, makes result caching very easy to implement
in Mathematica ([24]). In Fig. 2 we present the costs of implementing (4) and (13) in this system, by using
the aforementioned memorization technique.

As we can observe, recursion with caching result reduces the overall running time considerably. On the
other hand, recursive solutions to problems have the well known serious drawback of using large amount of
memory. In addition, this solution does not take any advantage of the simple structure of the PCP. In what
follows we propose a non-recursive algorithm to compute PCP which takes into account the isomorphism
between PCP and complex powers. In concrete, we obtain the PCP by means of the following procedure:

Algorithm for obtaining PCP using complex arithmetic

1. Compute, by using complex arithmetic, (x0 + yi)k, x0, y ∈ R.

2. Replace the real parameter y by

y ← αsx1 + βsx2;

3. Replace the imaginary unit i by the unit vector

i← αse1 + βse2; s = 0, 1, . . . , k.

We remark the fact that the most demanding operation is performed in Step 1 and is done in complex
arithmetic. As a consequence, the time consumed for obtaining polynomials of a certain degree is significantly
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Figure 3: CPU time for PCP - complex arithmetic (k = 2, . . . , 40).
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Figure 4: Comparison between GP and PCP with result caching (GP-R and PCP-R) with PCP with complex
arithmetic (PCP) (k = 2, . . . , 40).

reduced. Fig. 3 illustrates the performance of the algorithm. Once more, the CPU time concerns the effort
needed to computing all the k + 1 polynomials of a given degree k.

For the sake of better visibility, we compare in Fig. 4 the recursion and complex approach to obtain PCP
and the recursion algorithm for computing GP.

5 Applications

In this section we will see how to express each generalized powers Gks as a linear combination of pseudo-complex
powers Zk0 , Zk1 , . . . ,Zkk . As a consequence it will be possible to obtain, from Theorem 2, the series expansion
of any reduced quaternion valued monogenic function in terms of PCP.

Recalling Proposition 2 in Sect. 3, one can write

G = D−1
2 W (1, 2, . . . , k + 1)D−1

1 Z, (14)

where D1 and D2 are the diagonal matrices (11) and W (1, 2, . . . , k + 1) =: Wk+1 is the inverse of the
Vandermonde matrix Vk+1 in (12).

It is well known that Vandermonde matrices are often quite ill-conditioned and standard numerically stable
methods fail, in general, to compute accurately the entries of their inverses (cf. [11]). For this reason, the
inversion of Vandermonde matrices has received so much attention, particularly in the search for fast and
accurate algorithms. In this context, we have to mention here the well known Traub [23], Parker [22] and
Björck and Pereyra [2] algorithms which make use of the special structure of a Vandermonde matrix to rapidly
compute its inverse. More recently, Eisinberg and Fedele in their paper [11], proposed an explicit formula for
the inverse of Vandermonde matrices which is particularly useful in the case of equidistant nodes in [1, n], as
is the case of Vn in (12). Their algorithm is based on the following essential result.
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Theorem 3 Let Vn be a Vandermonde matrix of the form (12) and Wn be its inverse. The generic element
wn(i, j) of Wn is

wn(i, j) = (−1)i+jΦ(n, j)

n−i∑
r=0

(−1)rjrσ(n, n− i− r), (15)

where

Φ(n, j) =
1

(n− j)!(j − 1)!
(16)

and

σ(n, s) =

[
n+ 1

n+ 1− s

]
. (17)

Here
[
a
b

]
denotes the usual 1(unsigned) Stirling numbers of the first kind [17].

Proof: The result follows from [11, Theorem 1], using the closed expression of σ(n, s) and Φ(n, j) given by
formulas (32) and (33) presented in the same reference. �

The algorithm proposed in [11] which is, in fact, a modification of [22], can now be rewritten as follows.

Eisinberg and Fedele algorithm for inverting Vn

1. Compute, by means of (16), φ(n, j), j = 1, 2, . . . , n;

2. Compute, by means of (17), σ(n, s), s = 0, 1, . . . , n;

3. Construct the recursive function

ψ(1, j) = (−1)1+j σ(n, n)

j
, j = 1, 2, . . . , n

ψ(2, j) = −ψ(1, j)

n∑
r=1
r 6=j

1

r
, j = 1, 2, . . . , n

ψ(n, j) = (−1)n+j , j = 1, 2, . . . , n

ψ(i− 1, j) = jψ(i, j)− (−1)i+jσ(n, n+ 1− i), i = n, n− 1, . . . , 2,

j = 1, 2, . . . , n;

4. Compute the j−th column [ψ(i, j)φ(n, j)], j = 1, 2, . . . , n.

We point out that the problem of obtaining a series expansion similar to (3) but involving PCP requires the
inversion of several Vandermonde matrices Vn, for n = 1, 2, . . . . This demanding need provided motivation to
develop a recursive algorithm to compute all the inverses of Vn which, as we will see later on, is competitive
comparing with the aforementioned Eisinberg and Fedele algorithm. In this context, the following result plays
an important role, since it allows to obtain a recursive procedure for computing Wn.

Proposition 3 The matrix Wn = V−1
n has the following structure

Wn =

 Mn−1Wn−1Dn−1 Σn−1

Φn−1 Φ(n, n)

 , (18)

where

1
[a
b

]
gives the number of permutations of a elements that contain exactly b cycles and are related with the signed Stirling

numbers s(a, b) by s(a, b) = (−1)a−b
[a
b

]
.
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• Mn−1 is the lower bidiagonal matrix whose elements mij are given by

mij =

{
n, i = j

−1, i = j + 1
i, j = 1, . . . , n− 1,

• Dn−1 is the diagonal matrix
Dn−1 = diag( 1

n−1 ,
1

n−2 , . . . ,
1
2 , 1),

• Σn−1 is the (n− 1)−column vector whose elements are given by

(−1)n+iσ(n− 1, n− i)Φ(n, n), i = 1, . . . , n− 1. (19)

• Φn−1 is the row vector whose elements are

(−1)n+jΦ(n, j), j = 1, . . . , n− 1. (20)

Proof: The well known properties of the Stirling numbers of the first kind (see e.g. [17])[
k

k

]
= 1,

[
n

0

]
=

[
0

n

]
= 0, n > 0,

[
n+ 1

k

]
= n

[
n

k

]
+

[
n

k − 1

]
,

allow to derive the following properties of σ(n, s) in (17):

σ(n, 0) = 1,

σ(n, s) = 0, for s > n or s < 0, (21)

σ(n, s) = σ(n− 1, s) + nσ(n− 1, s− 1)

and these together with (15)-(17) lead to the following relation between the elements wn(i, j) of Wn and
wn−1(i, j) of Wn−1:

wn(i, j) =
n

n− j
wn−1(i, j)− 1

n− j
wn−1(i− 1, j), (22)

for i = 1, . . . , n and j = 1, . . . , n− 1, with the convention wn(0, j) := 0.
Denoting by w̃n(i, j) the elements of the matrix in the right-hand side of (18), observe that (22) implies

that

w̃n(i, j) =
nwn−1(i, j)− wn−1(i− 1, j)

n− j
= wn(i, j), i, j = 1, . . . , n− 1.

This means that the elements of Mn−1Wn−1Dn−1 coincide with the elements in the first n − 1 rows and
n− 1 columns of Wn.

Last row of Wn follows directly from the expression of wn(n, j) in (15). Since relations (21) imply that

n−i∑
r=0

(−1)rnrσ(n, n− i− r) = σ(n− 1, n− i),

the expression of Σk−1 can be obtained easily. �
Based on this result, we propose the following algorithm to obtain the inverse of a Vandermonde matrix

of the form (12).

Modified algorithm for inverting Vn

1. Compute, explicitly, first and last rows of Wn:

wn(1, j) = (−1)j+1

(
n

j

)
; (23)

wn(n, j) =
(−1)n+j

(n− j)!(j − 1)!
; (24)

for j = 1, . . . , n.
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Figure 5: CPU time for inverting V (1, . . . , k).

2. Compute recursively:

wn(i, n) = wn(i+ 1, n) +
(−1)n−i

(n− 1)!

[
n+ 1

i+ 1

]
; (25)

wn(i, j) =
n

n− j
wn−1(i, j)− 1

n− j
wn−1(i− 1, j), j = 1, . . . , n− 1, (26)

for i = n− 1, . . . , 2.

Remark 2 The expressions (24) and (26) come at once from (20) and (22), respectively. Using the result

n∑
r=0

(−1)n−rjr
[
n

r

]
= 0, for j < n,

(see e.g. [17]) together with (17) gives

n−1∑
r=0

(−1)rjrσ(n, n− 1− r) =
n!

j

and this, in turn, yields

wn(1, j) = (−1)1+jΦ(n, j)

n−1∑
r=0

(−1)rjrσ(n, n− 1− r) = (−1)1+j

(
n

j

)
.

Finally, (25) follows from (19) and (21).

At this stage our goal is to provide an experimental comparison between Eisinberg and Fedele algorithm
and the modified algorithm proposed in this work for inverting a Vandermonde matrix Vn.

All the numerical results were obtained by the use of Mathematica, working with infinite precision. Figures
5 and 6 compare the performance of this new algorithm with the one proposed by Eisinberg and Fedele. We
underline that the CPU time presented on Fig. 5 concerns the effort needed to computing the inverse Wn, for
a given n. When the goal is to compute all the inverses of order less or equal than n we observe in Fig. 6 that
the modified algorithm is, in fact, very competitive comparing with the Eisinberg and Fedele algorithm.

We have now the necessary tools to express a reduced quaternion valued monogenic function in a series
expansion of PCP. First we note that (14) together with (23)-(26) lead easily to the following result.

Proposition 4 Each generalized power of degree k can be written as

Gks =

k∑
t=0

as,tZkt , s = 0, . . . , k,
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Figure 6: CPU time for computing {V (1), V (1, 2), . . . , V (1, . . . , k)}.

where

as,t =

(
k

s

)−1

(−e1 − (t+ 1)e2)kwk+1(s+ 1, t+ 1)

with wk+1(s+ 1, t+ 1) given by (23)-(26).

Finally, one can use this last result together with the Taylor expansion (3) to conclude:

Proposition 5 Any monogenic function f : Ω ⊂ R3 → H can be written as a series of the form

f(x) =

∞∑
k=0

k∑
t=0

ck,tZkt ,

where the coefficients ck,t are given by

ck,t =
(−e1 − (t+ 1)e2)k

k!

k∑
s=0

∂kf(0)

∂xk−s1 ∂xs2
wk+1(s+ 1, t+ 1).

Remark 3 We point out that (−e1 − (t+ 1)e2)k, depending on the parity of k, is a real number (if k even)
or a pure vector (if k odd). More precisely,

(−e1 − (t+ 1)e2)k = (−1)
k
2 (t2 + 2t+ 2)b

k
2 cak,t,

where b.c is the floor function and ak,t is

ak,t =

{
1, k even

e1 + (t+ 1)e2, k odd
.

6 Final Remarks

The algorithm proposed in this work allows to obtain the inverse of Vandermonde matrices in equally spaced
nodes explicitly and, from the computational point of view, efficiently. Combining this fact with the perfor-
mance revealed by the complex algorithm, presented in Sect. 4, for computing PCP of the form (6)-(9) we
can conclude that these PCP can become, in the future, an attractive and competitive tool for applications,
in particular, in the framework of approximation problems.
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[10] Delanghe, R., Lávička, R., Souček, V.: The Gelfand-Tsetlin bases for Hodge-de Rham systems in Eu-
clidean spaces. Math. Methods Appl. Sci. 7(35), 745–757 (2012)

[11] Eisinberg, A., Fedele, G.: On the inversion of the Vandermonde matrix. Applied Mathematics and Com-
putation 174, 1384–1397 (2006)

[12] Falcão, M.I., Miranda, F.: Quaternions: A Mathematica package for quaternionic analysis. In: Murgante,
B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B. (eds.) Lecture Notes in Computer Science, vol.
6784, pp. 200–214. Springer-Verlag Berlin Heidelberg (2011)

[13] Falcão, M.I., Cruz, J., Malonek, H.: Remarks on the generation of monogenic functions. 17th Inter.
Conf. on the Appl. of Computer Science and Mathematics on Architecture and Civil Engineering, Weimar
(2006)

[14] Falcão, M.I., Malonek, H.: Generalized exponentials through Appell sets in Rn+1 and Bessel functions.
In: Simos, T.E., Psihoyios, G., Tsitouras, C. (eds.) AIP Conference Proceedings. vol. 936, pp. 738–741
(2007)

[15] Gürlebeck, K., Malonek, H.: A hypercomplex derivative of monogenic functions in Rn+1 and its applica-
tions. Complex Variables Theory Appl. 39, 199–228 (1999)
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