3,901 research outputs found

    Intensity Segmentation of the Human Brain with Tissue dependent Homogenization

    Get PDF
    High-precision segmentation of the human cerebral cortex based on T1-weighted MRI is still a challenging task. When opting to use an intensity based approach, careful data processing is mandatory to overcome inaccuracies. They are caused by noise, partial volume effects and systematic signal intensity variations imposed by limited homogeneity of the acquisition hardware. We propose an intensity segmentation which is free from any shape prior. It uses for the first time alternatively grey (GM) or white matter (WM) based homogenization. This new tissue dependency was introduced as the analysis of 60 high resolution MRI datasets revealed appreciable differences in the axial bias field corrections, depending if they are based on GM or WM. Homogenization starts with axial bias correction, a spatially irregular distortion correction follows and finally a noise reduction is applied. The construction of the axial bias correction is based on partitions of a depth histogram. The irregular bias is modelled by Moody Darken radial basis functions. Noise is eliminated by nonlinear edge preserving and homogenizing filters. A critical point is the estimation of the training set for the irregular bias correction in the GM approach. Because of intensity edges between CSF (cerebro spinal fluid surrounding the brain and within the ventricles), GM and WM this estimate shows an acceptable stability. By this supervised approach a high flexibility and precision for the segmentation of normal and pathologic brains is gained. The precision of this approach is shown using the Montreal brain phantom. Real data applications exemplify the advantage of the GM based approach, compared to the usual WM homogenization, allowing improved cortex segmentation

    A Neural Networks Committee for the Contextual Bandit Problem

    Get PDF
    This paper presents a new contextual bandit algorithm, NeuralBandit, which does not need hypothesis on stationarity of contexts and rewards. Several neural networks are trained to modelize the value of rewards knowing the context. Two variants, based on multi-experts approach, are proposed to choose online the parameters of multi-layer perceptrons. The proposed algorithms are successfully tested on a large dataset with and without stationarity of rewards.Comment: 21st International Conference on Neural Information Processin

    Concurrent bandits and cognitive radio networks

    Full text link
    We consider the problem of multiple users targeting the arms of a single multi-armed stochastic bandit. The motivation for this problem comes from cognitive radio networks, where selfish users need to coexist without any side communication between them, implicit cooperation or common control. Even the number of users may be unknown and can vary as users join or leave the network. We propose an algorithm that combines an Ï”\epsilon-greedy learning rule with a collision avoidance mechanism. We analyze its regret with respect to the system-wide optimum and show that sub-linear regret can be obtained in this setting. Experiments show dramatic improvement compared to other algorithms for this setting

    Preconditioned Bi-Conjugate Gradient Method for Radiative Transfer in Spherical Media

    Full text link
    A robust numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG)method is proposed for the solution of radiative transfer equation in spherical geometry.A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These are iterative methods based on the construction of a set of bi-orthogonal vectors. The application of Pre-BiCG method in some benchmark tests show that the method is quite versatile, and can handle hard problems that may arise in astrophysical radiative transfer theory.Comment: 19 pages, 12 figure

    Inadequate food intake at high temperatures is related to depressed mitochondrial respiratory capacity

    Get PDF
    Animals, especially ectotherms, are highly sensitive to the temperature of their surrounding environment. Extremely high temperature, for example, induces a decline of average performance of conspecifics within a population, but individual heterogeneity in the ability to cope with elevating temperatures has rarely been studied. In this study, we examined inter-individual variation in feeding ability and consequent growth rate of juvenile brown trout Salmo trutta acclimated to a high temperature (19°C), and investigated the relationship between these metrics of whole-animal performances and among-individual variation in mitochondrial respiration capacity. Food was provided ad libitum yet intake varied ten-fold amongst individuals, resulting in some fish losing weight whilst others continued to grow. Almost half of the variation in food intake was related to variability in mitochondrial capacity: low intake (and hence growth failure) was associated with high leak respiration rates within liver and muscle mitochondria, and a lower coupling of muscle mitochondria. These observations, combined with the inability of fish with low food consumption to increase their intake despite ad libitum food levels, suggest a possible insufficient capacity of the mitochondria for maintaining ATP homeostasis. Individual variation in thermal performance is likely to confer variation in the upper limit of an organism's thermal niche and in turn affect the structure of wild populations in warming environments

    The use of plasma ashers and Monte Carlo modeling for the projection of atomic oxygen durability of protected polymers in low Earth orbit

    Get PDF
    The results of ground laboratory and in-space exposure of polymeric materials to atomic oxygen has enabled the development of a Monte Carlo computational model which simulates the oxidation processes of both environments. The cost effective projection of long-term low-Earth-orbital durability of protected polymeric materials such as SiO(x)-coated polyimide Kapton photovoltaic array blankets will require ground-based testing to assure power system reliability. Although silicon dioxide thin film protective coatings can greatly extend the useful life of polymeric materials in ground-based testing, the projection of in-space durability based on these results can be made more reliable through the use of modeling which simulates the mechanistic properties of atomic oxygen interaction, and replicates test results in both environments. Techniques to project long-term performance of protected materials, such as the Space Station Freedom solar array blankets, are developed based on ground laboratory experiments, in-space experiments, and computational modeling

    Differential effects of food availability on minimum and maximum rates of metabolism

    Get PDF
    Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout (Salmo trutta) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability. As a result, aerobic scope (i.e. the capacity to elevate metabolism above baseline requirements) declines as food availability increases. These differential changes in metabolic rates likely have important consequences for how organisms partition available metabolic power to different functions under the constraints imposed by food availability

    Atomic oxygen interaction with solar array blankets at protective coating defect sites

    Get PDF
    Atomic oxygen in the low-Earth-orbital environment oxidizes SiOx protected polyimide Kapton solar array blankets at sites which are not protected such as pin windows or scratches in the protective coatings. The magnitude and shape of the atomic oxygen undercutting which occurs at these sites is dependent upon the exposure environment details such as arrival direction and reaction probability. The geometry of atomic oxygen undercutting at defect sites exposed to atomic oxygen in plasma asher was used to develop a Monte Carlo model to simulate atomic oxygen erosion processes at defect sites in protected Kapton. Comparisons of Monte Carlo predictions and experimental results are presented for plasma asher atomic oxygen exposures for large and small defects as well as for protective coatings on one or both sides of Kapton. The model is used to predict in-space exposure results at defect sites for both directed and sweeping atomic oxygen exposure. A comparison of surface textures predicted by the Monte Carlo model and those experimentally observed from both directed space ram and laboratory plasma asher atomic oxygen exposure indicate substantial agreement

    Self-Templated Nucleation in Peptide and Protein aggregation

    Full text link
    Peptides and proteins exhibit a common tendency to assemble into highly ordered fibrillar aggregates, whose formation proceeds in a nucleation-dependent manner that is often preceded by the formation of disordered oligomeric assemblies. This process has received much attention because disordered oligomeric aggregates have been associated with neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we describe a self-templated nucleation mechanism that determines the transition between the initial condensation of polypeptide chains into disordered assemblies and their reordering into fibrillar structures. The results that we present show that at the molecular level this transition is due to the ability of polypeptide chains to reorder within oligomers into fibrillar assemblies whose surfaces act as templates that stabilise the disordered assemblies.Comment: 4 pages, 3 figure

    Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    Get PDF
    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented
    • 

    corecore