Peptides and proteins exhibit a common tendency to assemble into highly
ordered fibrillar aggregates, whose formation proceeds in a
nucleation-dependent manner that is often preceded by the formation of
disordered oligomeric assemblies. This process has received much attention
because disordered oligomeric aggregates have been associated with
neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here
we describe a self-templated nucleation mechanism that determines the
transition between the initial condensation of polypeptide chains into
disordered assemblies and their reordering into fibrillar structures. The
results that we present show that at the molecular level this transition is due
to the ability of polypeptide chains to reorder within oligomers into fibrillar
assemblies whose surfaces act as templates that stabilise the disordered
assemblies.Comment: 4 pages, 3 figure