59 research outputs found

    Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures

    Get PDF
    Laser microdissection is a valuable tool for isolating specific cells from mixtures, such as male cells in a mixture with female cells, e.g., in cases of sexual assault. These cells can be stained with Y-chromosome-specific probes. We developed an automatic screening method to detect male cells after fluorescence in situ hybridization in suspension (S-FISH). To simulate forensic casework, the method was tested on female saliva after cataglottis (a kiss involving tongue-to-tongue contact) and on licking traces (swabs of dried male saliva on female skin) even after drying. After isolation of the detected cells, short tandem repeat profiling was performed. Full DNA profiles could consistently be obtained from as little as ten buccal cells. Isolation of five cells resulted in a mean of 98% (SD of 3.4%) of the alleles detected, showing that the developed S-FISH staining had no significant negative influence on DNA recovery and can be used in forensic casework

    Laser capture microdissection in forensic research: a review

    Get PDF
    In forensic sciences, short tandem repeat (STR) analysis has become the prime tool for DNA-based identification of the donor(s) of biological stains and/or traces. Many traces, however, contain cells and, hence, DNA, from more than a single individual, giving rise to mixed genotypes and the subsequent difficulties in interpreting the results. An even more challenging situation occurs when cells of a victim are much more abundant than the cells of the perpetrator. Therefore, the forensic community seeks to improve cell-separation methods in order to generate single-donor cell populations from a mixed trace in order to facilitate DNA typing and identification. Laser capture microdissection (LCM) offers a valuable tool for precise separation of specific cells. This review summarises all possible forensic applications of LCM, gives an overview of the staining and detection options, including automated detection and retrieval of cells of interest, and reviews the DNA extraction protocols compatible with LCM of cells from forensic samples

    Thirty Years After Michael E. Porter: What Do We Know About Business Exit?

    Get PDF
    Although a business exit is an important corporate change initiative, the buyer’s side seems to be more appealing to management researchers than the seller’s because acquisitions imply growth, i.e., success. Yet from an optimistic viewpoint, business exit can effectively create value for the selling company. In this paper we attempt to bring the relevance of the seller’s side back into our consciousness by asking: What do we know about business exit? We start our exploration with Porter (1976), focusing on literature that investigates the antecedents of, barriers to, and outcomes of business exit. We also include studies from related fields such as finance and economics.1 Through this research we determine three clusters of findings: factors promoting business exit, exit barriers, and exit outcomes. Overall, it is the intention of this paper to highlight the importance of business exit for research and practice. Knowing what we know about business exits and their high financial value we should bear in mind that exit need not mean failure but a new beginning for a corporation

    Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling

    Get PDF
    Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.</p

    Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia

    Get PDF
    This paper describes molecular genetic identification of one third of the skeletal remains of 88 victims of postwar (June 1945) killings found in the Konfin I mass grave in Slovenia. Living relatives were traced for 36 victims. We analyzed 84 right femurs and compared their genetic profiles to the genetic material of living relatives. We cleaned the bones, removed surface contamination, and ground the bones into powder. Prior to DNA isolation using Biorobot EZ1 (Qiagen), the powder was decalcified. The nuclear DNA of the samples was quantified using the real-time polymerase chain reaction method. We extracted 0.8 to 100 ng DNA/g of bone powder from 82 bones. Autosomal genetic profiles and Y-chromosome haplotypes were obtained from 98% of the bones, and mitochondrial DNA (mtDNA) haplotypes from 95% of the bones for the HVI region and from 98% of the bones for the HVII region. Genetic profiles of the nuclear and mtDNA were determined for reference persons. For traceability in the event of contamination, we created an elimination database including genetic profiles of the nuclear and mtDNA of all persons that had been in contact with the skeletal remains. When comparing genetic profiles, we matched 28 of the 84 bones analyzed with living relatives (brothers, sisters, sons, daughters, nephews, or cousins). The statistical analyses showed a high confidence of correct identification for all 28 victims in the Konfin I mass grave (posterior probability ranged from 99.9% to more than 99.999999%)

    Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling

    Get PDF
    IntroductionSARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants.MethodsWe combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19.ResultsWe observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions.DiscussionWe propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity

    A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    Get PDF
    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.Peer reviewe
    corecore