140 research outputs found

    CUL5-ARIH2 E3-E3 ubiquitin ligase structure reveals cullin-specific NEDD8 activation

    Get PDF
    An emerging mechanism of ubiquitylation involves partnering of two distinct E3 ligases. In the best-characterized E3-E3 pathways, ARIH-family RING-between-RING (RBR) E3s ligate ubiquitin to substrates of neddylated cullin-RING E3s. The E3 ARIH2 has been implicated in ubiquitylation of substrates of neddylated CUL5-RBX2-based E3s, including APOBEC3-family substrates of the host E3 hijacked by HIV-1 virion infectivity factor (Vif). However, the structural mechanisms remained elusive. Here structural and biochemical analyses reveal distinctive ARIH2 autoinhibition, and activation on assembly with neddylated CUL5-RBX2. Comparison to structures of E3-E3 assemblies comprising ARIH1 and neddylated CUL1-RBX1-based E3s shows cullin-specific regulation by NEDD8. Whereas CUL1-linked NEDD8 directly recruits ARIH1, CUL5-linked NEDD8 does not bind ARIH2. Instead, the data reveal an allosteric mechanism. NEDD8 uniquely contacts covalently linked CUL5, and elicits structural rearrangements that unveil cryptic ARIH2-binding sites. The data reveal how a ubiquitin-like protein induces protein-protein interactions indirectly, through allostery. Allosteric specificity of ubiquitin-like protein modifications may offer opportunities for therapeutic targeting.We thank D. Bollschweiler and T. Schäfer of the cryo-EM facility and we thank the crystallography facility at Max Planck Institute of Biochemistry

    Interlibrary loan and document delivery in North American health sciences libraries during the early months of the COVID-19 pandemic

    Get PDF
    Objective: The study purpose was to understand how early months of the COVID-19 pandemic altered interlibrary loan (ILL) and document delivery (DD) in North American health science libraries (HSLs), specifically the decision-making and workflow adjustments associated with accessing their own collections and obtaining content not available via ILL. Methods: Researchers distributed an online 26-question survey through 24 health science library email lists from January 6-February 7, 2021. Respondents reported their library’s ILL and DD activities from March-August 2020, including ILL/DD usage and policies, collection access, decision-making, and workflow adjustments. In addition to calculating frequencies, cross-tabulation and statistical tests were performed to test a priori potential associations. Two researchers independently and thematically analyzed responses to the 2 open-ended questions and reached consensus on themes. Results: Hospital libraries represented 52% (n=226/431) of respondents, along with 42% academic (n=179) and 6% (n=26) multi-type or other special. Only 1% (n=5) closed completely with no remote services, but many, 45% (n=194), ceased ILL of print materials. More than half (n=246/423; 58%) agreed that ILL requests likely to be filled from print remained unfilled more than is typical. Open-ended questions yielded 5 themes on ILL/DD staffing, setup, and systems; 6 on impacts for libraries and library users. Conclusion: Lack of communication regarding collection availability and staffing resulted in delayed or unfilled requests. Hospital and academic libraries made similar decisions about continuing services but reported different experiences in areas such as purchasing digital content. Hybrid ILL/DD workflows may continue for managing these services

    Building capacity to provide innovative interventions for early psychosis in mental health professionals

    Get PDF
    Abstract Despite international guidelines, cognitive behavioural therapy for early psychosis (CBTep) is still under-used in daily clinical practice, mainly due to the lack of specific skills among mental health professionals. The aim of the study was to evaluate the feasibility and efficacy of a CBTep training course and to investigate the impact of trainees' variables on the level of skills acquisition. An intensive and graded CBTep training programme consisting of 112 hours of plenary lectures, 30 hours of group supervision and 3 months of practical training was offered to mental health professionals of 65 Italian community Mental Health Centers (CMHCs). CBT expert psychologists were used as the comparison group. Participants underwent pre-planned exams to test the level of skills acquisition and were requested to complete a satisfaction survey. The vast majority of participants (93%) completed the training with medium–high evaluation scores and reported to be highly satisfied with the course. CMHCs staff members achieved high scores in the examinations and no major differences between them and CBT expert psychologists were found in most of the final exam scores. Our results support the feasibility and the efficacy of the training to build specific CBTep capacity in a large cohort of professionals working in Italian Generalist Mental Health Services. Key learning aims (1) To understand the capacity building of a short training programme in CBT for early psychosis dedicated to community mental health professionals. (2) To consider the optimal characteristics of a CBT training programme for early psychosis. (3) To reflect on the feasibility of a CBT training programme for early psychosis in the context of Italian Community Mental Health Services

    DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI

    Get PDF
    FANCI and FANCD2 form a complex, and play essential roles in the repair of interstrand DNA crosslinks (ICLs) by the Fanconi anemia (FA) pathway. FANCD2 is monoubiquitylated by the FA core complex, composed of 10 FA proteins including FANCL as the catalytic E3 subunit. FANCD2 monoubiquitylation can be reconstituted with purified minimal components, such as FANCI, E1, UBE2T (E2) and FANCL (E3) in vitro; however, its efficiency is quite low as compared to the in vivo monoubiquitylation of FANCD2. In this study, we found that various forms of DNA, such as single-stranded, double-stranded and branched DNA, robustly stimulated the FANCD2 monoubiquitylation in vitro up to a level comparable to its in vivo monoubiquitylation. This stimulation of the FANCD2 monoubiquitylation strictly required FANCI, suggesting that FANCD2 monoubiquitylation may occur in the FANCI–FANCD2 complex. A FANCI mutant that was defective in DNA binding was also significantly defective in FANCD2 monoubiquitylation in vitro. In the presence of 5′ flapped DNA, a DNA substrate mimicking the arrested replication fork, about 70% of the input FANCD2 was monoubiquitylated, while less than 1% FANCD2 monoubiquitylation was observed in the absence of the DNA. Therefore, DNA may be the unidentified factor required for proper FANCD2 monoubiquitylation

    Xpf and Not the Fanconi Anaemia Proteins or Rev3 Accounts for the Extreme Resistance to Cisplatin in Dictyostelium discoideum

    Get PDF
    Organisms like Dictyostelium discoideum, often referred to as DNA damage “extremophiles”, can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other “extremophiles” can tolerate and repair such large numbers of DNA crosslinks. Here we describe a comprehensive genetic analysis of crosslink repair in Dictyostelium discoideum. We analyse three gene groups that are crucial for a replication-coupled repair process that removes DNA crosslinks in higher eukarya: The Fanconi anaemia pathway (FA), translesion synthesis (TLS), and nucleotide excision repair. Gene disruption studies unexpectedly reveal that the FA genes and the TLS enzyme Rev3 play minor roles in tolerance to crosslinks in Dictyostelium. However, disruption of the Xpf nuclease subcomponent results in striking hypersensitivity to crosslinks. Genetic interaction studies reveal that although Xpf functions with FA and TLS gene products, most Xpf mediated repair is independent of these two gene groups. These results suggest that Dictyostelium utilises a distinct Xpf nuclease-mediated repair process to remove crosslinked DNA. Other DNA damage–resistant organisms and chemoresistant cancer cells might adopt a similar strategy to develop resistance to DNA crosslinking agents

    Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage

    Get PDF
    SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways

    Identifying strategies to improve access to credible and relevant information for public health professionals: a qualitative study

    Get PDF
    BACKGROUND: Movement towards evidence-based practices in many fields suggests that public health (PH) challenges may be better addressed if credible information about health risks and effective PH practices is readily available. However, research has shown that many PH information needs are unmet. In addition to reviewing relevant literature, this study performed a comprehensive review of existing information resources and collected data from two representative PH groups, focusing on identifying current practices, expressed information needs, and ideal systems for information access. METHODS: Nineteen individual interviews were conducted among employees of two domains in a state health department – communicable disease control and community health promotion. Subsequent focus groups gathered additional data on preferences for methods of information access and delivery as well as information format and content. Qualitative methods were used to identify themes in the interview and focus group transcripts. RESULTS: Informants expressed similar needs for improved information access including single portal access with a good search engine; automatic notification regarding newly available information; access to best practice information in many areas of interest that extend beyond biomedical subject matter; improved access to grey literature as well as to more systematic reviews, summaries, and full-text articles; better methods for indexing, filtering, and searching for information; and effective ways to archive information accessed. Informants expressed a preference for improving systems with which they were already familiar such as PubMed and listservs rather than introducing new systems of information organization and delivery. A hypothetical ideal model for information organization and delivery was developed based on informants' stated information needs and preferred means of delivery. Features of the model were endorsed by the subjects who reviewed it. CONCLUSION: Many critical information needs of PH practitioners are not being met efficiently or at all. We propose a dual strategy of: 1) promoting incremental improvements in existing information delivery systems based on the expressed preferences of the PH users of the systems and 2) the concurrent development and rigorous evaluation of new models of information organization and delivery that draw on successful resources already operating to deliver information to clinical medical practitioners

    Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity

    Get PDF
    Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub)(1). Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates(2). By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate(3,4). Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism(5). Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity

    CRA-1 Uncovers a Double-Strand Break-Dependent Pathway Promoting the Assembly of Central Region Proteins on Chromosome Axes During C. elegans Meiosis

    Get PDF
    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans

    Specificity and disease in the ubiquitin system

    Get PDF
    Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation
    corecore