12 research outputs found

    Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides

    Get PDF
    peer-reviewedTwenty seven Trp containing dipeptides were evaluated for their ability to inhibit dipeptidyl peptidase IV (DPP-IV), a key enzyme involved in incretin hormone processing. Novel DPP-IV inhibitors were identified comprising of three potent dipeptides (Trp-Arg, Trp-Lys and Trp-Leu) with half maximum inhibitory concentration (IC50 values) 11,000 μM for Trp-Thr and Trp-pThr, respectively. The mode of inhibition of these peptides was studied using Lineweaver and Burk kinetic analysis, which showed both competitive and non-competitive modes of inhibition depending on the peptide sequence. This suggested binding of the peptide inhibitors to different locations on DPP-IV. In silico analysis of the milk proteome revealed that some of the DPP-IV inhibitors identified herein may be released from milk proteins following enzymatic digestion. The results are relevant to understanding the mechanism(s) involved in DPP-IV inhibition by short peptides. This in turn may dictate a more targeted approach for the release of potent peptides from milk proteins with the view of developing biofunctional hydrolysates for the management of type 2 diabetes.ACCEPTEDpeer-reviewe

    Inhibition of dipeptidyl peptidase IV and xanthine oxidase by amino acids and dipeptides

    Get PDF
    peer-reviewedXanthine oxidase (XO) and dipeptidyl peptidase IV (DPP-IV) inhibition by amino acids and dipeptides was studied. Trp and Trp-containing dipeptides (Arg-Trp, Trp-Val, Val-Trp, Lys-Trp and Ile-Trp) inhibited XO. Three amino acids (Met, Leu and Trp) and eight dipeptides (Phe-Leu, Trp-Val, His-Leu, Glu-Lys, Ala-Leu, Val-Ala, Ser-Leu and Gly-Leu) inhibited DPP-IV. Trp and Trp-Val were multifunctional inhibitors of XO and DPP-IV. Lineweaver and Burk analysis showed that Trp was a non-competitive inhibitor of XO and a competitive inhibitor of DPP-IV. Molecular docking with Autodock Vina was used to better understand the interaction of the peptides with the active site of the enzyme. Because of the non-competitive inhibition observed, docking of Trp-Val to the secondary binding sites of XO and DPP-IV is required. Trp-Val was predicted to be intestinally neutral (between 25% and 75% peptide remaining after 60 min simulated intestinal digestion). These results are of significance for the reduction of reactive oxygen species (ROS) and the increase of the half-life of incretins by food-derived peptides. (C) 2013 Elsevier Ltd. All rights reserved.ACCEPTEDpeer-reviewe

    Rationale and study design of a randomized, placebo-controlled, double-blind phase 2b trial to evaluate efficacy, safety, and tolerability of an oral glutaminyl cyclase inhibitor varoglutamstat (PQ912) in study participants with MCI and mild AD—VIVIAD

    No full text
    Background: Varoglutamstat (formerly PQ912) is a small molecule that inhibits the activity of the glutaminyl cyclase to reduce the level of pyroglutamate-A-beta (pGluAB42). Recent studies confirm that pGluAB42 is a particular amyloid form that is highly synaptotoxic and plays a significant role in the development of AD. Methods: This paper describes the design and methodology behind the phase 2b VIVIAD-trial in AD. The aim of this study is to evaluate varoglutamstat in a state-of-the-art designed, placebo-controlled, double-blind, randomized clinical trial for safety and tolerability, efficacy on cognition, and effects on brain activity and AD biomarkers. In addition to its main purpose, the trial will explore potential associations between novel and established biomarkers and their individual and composite relation to disease characteristics. Results: To be expected early 2023 Conclusion: This state of the art phase 2b study will yield important results for the field with respect to trial methodology and for the treatment of AD with a small molecule directed against pyroglutamate-A-beta. Trial registration: ClinicalTrials.gov Identifier: NCT04498650

    Response surface methodology applied to the generation of casein hydrolysates with antioxidant and dipeptidyl peptidase IV inhibitory properties

    No full text
    peer-reviewedBACKGROUND: Hydrolysis parameters affecting the release of dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant peptides from milk proteins have not been extensively studied. Therefore, a multifactorial (i.e. pH, temperature and hydrolysis time) composite design was used to optimise the release of bioactive peptides (BAPs) with DPP-IV inhibitory and antioxidant [oxygen radical absorbance capacity (ORAC)] properties from sodium caseinate. RESULTS: Fifteen sodium caseinate hydrolysates (H1-H15) were generated with ProtamexTM , a bacillus proteinase activity. Hydrolysis time (1 to 5 h) had the highest influence on both DPP-IV inhibitory properties and ORAC activity (P 0.05) as the response surface methodology (RSM) predicted optimum bioactivities. CONCLUSION: Generation of milk protein hydrolysates through multifactorial design approaches may aid in the optimal enzymatic release of BAPs with serum glucose lowering and antioxidant properties.ACCEPTEDpeer-reviewe

    Targeting beta-cell cyclic 3 ' 5 ' adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review

    No full text
    Cyclic 3'5'AMP is an important physiological amplifier of glucose-induced insulin secretion by the pancreatic islet beta-cell, where it is formed by the activity of adenylyl cyclase, especially in response to the incretin hormones GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic peptide). These hormones are secreted from the small intestine during and following a meal, and are important in producing a full insulin secretory response to nutrient stimuli. Cyclic AMP influences many steps involved in glucose-induced insulin secretion and may be important in regulating pancreatic islet beta-cell differentiation, growth and survival. Cyclic AMP (CAMP) itself is rapidly degraded in the pancreatic islet beta-cell by cyclic nucleotide phosphodiesterase (POE) enzymes. This review discusses the possibility of targeting cAMP mechanisms in the treatment of type 2 diabetes mellitus, in which insulin release in response to glucose is impaired. This could be achieved by the use of GLP-1 or GIP to elevate cAMP in the pancreatic islet beta-cell. However, these peptides are normally rapidly degraded by dipeptidyl peptidase IV (DPP IV). Thus longer-acting analogues of GLP-1 and GIP, resistant to enzymic degradation, and orally active inhibitors of DPP IV have also been developed, and these agents were found to improve metabolic control in experimentally diabetic animals and in patients with type 2 diabetes. The use of selective inhibitors of type 3 phosphodiesterase (PDE3B), which is probably the important pancreatic islet beta-cell PDE isoform, would require their targeting to the islet beta-cell, because inhibition of PDE3B in adipocytes and hepatocytes would induce insulin resistance

    Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes

    No full text
    corecore