75 research outputs found

    Pan-cancer prognostic genetic mutations and clinicopathological factors associated with survival outcomes: a systematic review

    Get PDF
    Cancer is a leading cause of death, accounting for almost 10 million deaths annually worldwide. Personalised therapies harnessing genetic and clinical information may improve survival outcomes and reduce the side effects of treatments. The aim of this study is to appraise published evidence on clinicopathological factors and genetic mutations (single nucleotide polymorphisms [SNPs]) associated with prognosis across 11 cancer types: lung, colorectal, breast, prostate, melanoma, renal, glioma, bladder, leukaemia, endometrial, ovarian. A systematic literature search of PubMed/MEDLINE and Europe PMC was conducted from database inception to July 1, 2021. 2497 publications from PubMed/MEDLINE and 288 preprints from Europe PMC were included. Subsequent reference and citation search was conducted and a further 39 articles added. 2824 articles were reviewed by title/abstract and 247 articles were selected for systematic review. Majority of the articles were retrospective cohort studies focusing on one cancer type, 8 articles were on pan-cancer level and 6 articles were reviews. Studies analysing clinicopathological factors included 908,567 patients and identified 238 factors, including age, gender, stage, grade, size, site, subtype, invasion, lymph nodes. Genetic studies included 210,802 patients and identified 440 gene mutations associated with cancer survival, including genes TP53, BRCA1, BRCA2, BRAF, KRAS, BIRC5. We generated a comprehensive knowledge base of biomarkers that can be used to tailor treatment according to patients’ unique genetic and clinical characteristics. Our pan-cancer investigation uncovers the biomarker landscape and their combined influence that may help guide health practitioners and researchers across the continuum of cancer care from drug development to long-term survivorship

    Thermodynamics of Aryl-Dihydroxyphenyl-Thiadiazole Binding to Human Hsp90

    Get PDF
    The design of specific inhibitors against the Hsp90 chaperone and other enzyme relies on the detailed and correct understanding of both the thermodynamics of inhibitor binding and the structural features of the protein-inhibitor complex. Here we present a detailed thermodynamic study of binding of aryl-dihydroxyphenyl-thiadiazole inhibitor series to recombinant human Hsp90 alpha isozyme. The inhibitors are highly potent, with the intrinsic Kd approximately equal to 1 nM as determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). Dissection of protonation contributions yielded the intrinsic thermodynamic parameters of binding, such as enthalpy, entropy, Gibbs free energy, and the heat capacity. The differences in binding thermodynamic parameters between the series of inhibitors revealed contributions of the functional groups, thus providing insight into molecular reasons for improved or diminished binding efficiency. The inhibitor binding to Hsp90 alpha primarily depended on a large favorable enthalpic contribution combined with the smaller favorable entropic contribution, thus suggesting that their binding was both enthalpically and entropically optimized. The enthalpy-entropy compensation phenomenon was highly evident when comparing the inhibitor binding enthalpies and entropies. This study illustrates how detailed thermodynamic analysis helps to understand energetic reasons for the binding efficiency and develop more potent inhibitors that could be applied for therapeutic use as Hsp90 inhibitors

    European aerosol phenomenology - 8 : Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets

    Get PDF
    Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.Peer reviewe

    Polygenic burden in focal and generalized epilepsies

    Get PDF
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japaneseancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64 710-15; Cleveland: P = 2.85 710-4; Finnish-ancestry Epi25: P = 1.80 710-4) or population controls (Epi25: P = 2.35 710-70; Cleveland: P = 1.43 710-7; Finnish-ancestry Epi25: P = 3.11 710-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99 710-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74 710-19; Cleveland: P = 1.69 710-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60 710-15; Cleveland: P = 1.39 710-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    The importance of the molecular weight of ethyl cellulose on the properties of aqueous-based controlled release coatings

    No full text
    Previous investigations of aqueous based ethyl cellulose (EC) latex dispersions have mainly focused on the commercially available viscosity grade 20\ua0cps. In this study, dispersions of EC with varying viscosity grades (which correspond to molecular weights), ranging from 4 to 100 cps, were produced and characterised. The dispersions showed particle sizes around 200\ua0nm and highly negative ?-potentials (approx. ?100\ua0mV), which indicated stable dispersions as confirmed by sedimentation studies. The different latexes were used to produce free-standing film coatings. We hypothesised that the different viscosity grades of EC would result in different properties of the films. We found that an increase in viscosity grade (and higher molecular weight) resulted in lower coalescence between the particles during film formation and thus to higher water permeability than in film coatings of lower molecular weight. After exposure to water the EC 4\ua0cps and 20\ua0cps film coatings had a more porous structure in the side facing the air during production and drying after immersion in water. Molecular weight is therefore a factor that should be considered when producing pharmaceutical coatings for controlled release

    Deterministic and probabilistic analysis of fuel channel-graphite gas-gap closure in Ignalina NNP reactor

    No full text
    To maintain thermal contact between the fuel assembly and the graphite moderator, RBMK design reactors employ graphite split rings, which are alternatively tight on the pressure tube or tight on the graphite brick central bore. The split in the graphite rings allows a helium / nitrogen gas mixture to flow up the fuel channel. This prevents oxidation of the graphite and can be sampled to detect pressure tube leaks. The initial clearance between the rings and pressure tube or graphite brick is approximately 2.7 mm (1.35mm each side). Due to material property changes of the pressure tubes and graphite during operation of the reactor, the size of the clearance between the rings and the pressure tube/brick, called the “gas-gap”, varies. Closure of these gaps has been identified as a possible safety case issue by reactor designers and by independent reviews carried out as part of TACIS reviews and as part of the Ignalina Safety Analysis Report. The overall objective of the studies is to aid prediction of the gas-gap closure process, and help to identify a suitable monitoring strategy for gas-gap closure that could be used for any RBMK reactor. The deterministic assessments based on the Ignalina RBMK-1500 reactors have carried out, modelling the behaviour of the graphite under irradiation and have predicted graphite bore diameter changes that are in good agreement with the measurements of graphite bore diameters taken at Ignalina Nuclear Power Plant (NPP). A probabilistic model has been developed using the actual results of the deterministic calculations with non-linear graphite behaviour. Statistical analysis of the measurements of tube and graphite diameters taken from unit 1 and 2 at Ignalina NPP has been carried outLietuvos energetikos institutas, [email protected] energetikos institutas, j. [email protected] energetikos institutas, j. [email protected]
    corecore