64 research outputs found

    Experimental Results of Underwater Sound Speed Profile Inversion by Few-shot Multi-task Learning

    Full text link
    Underwater Sound Speed Profile (SSP) distribution has great influence on the propagation mode of acoustic signal, thus the fast and accurate estimation of SSP is of great importance in building underwater observation systems. The state-of-the-art SSP inversion methods include frameworks of matched field processing (MFP), compressive sensing (CS), and feedforeward neural networks (FNN), among which the FNN shows better real-time performance while maintain the same level of accuracy. However, the training of FNN needs quite a lot historical SSP samples, which is diffcult to be satisfied in many ocean areas. This situation is called few-shot learning. To tackle this issue, we propose a multi-task learning (MTL) model with partial parameter sharing among different traning tasks. By MTL, common features could be extracted, thus accelerating the learning process on given tasks, and reducing the demand for reference samples, so as to enhance the generalization ability in few-shot learning. To verify the feasibility and effectiveness of MTL, a deep-ocean experiment was held in April 2023 at the South China Sea. Results shows that MTL outperforms the state-of-the-art methods in terms of accuracy for SSP inversion, while inherits the real-time advantage of FNN during the inversion stage

    Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice

    Get PDF
    AbstractEthnopharmacological relevanceGentiopicroside (GPS), one of iridoid glucoside representatives, is the most potential active component in Gentiana rigescens Franch. ex Hemsl and Gentiana macrophylla Pall. These two herbs have been used to treat jaundice and other hepatic and billiary diseases in traditional Chinese medicine for thousands of years.Aim of the studyThis study aimed to investigate the protective effects and mechanisms of GPS on α-naphthylisothiocyanate (ANIT) induced cholestatic liver injury in mice.Materials and methodsMice were treated with GPS (130mg/kg, ig) for 5 consecutive days. On the third day, mice were given a single dose of Alpha-naphthylisothiocyanate (75mg/kg, ig). Serum biochemical markers and individual bile acids in serum, liver, urine and feces were measured at different time points after ANIT administration. The expression of hepatic bile acid synthesis, uptake and transporter genes as well as ileum bile acid transporter genes were assayed.ResultsIn this study, ANIT exposure resulted in serious cholestasis with liver injury, which was demonstrated by dramatically increased serum levels of ALT, ALP, TBA and TBIL along with TCA CA, MCAs and TMCAs accumulation in both liver and serum. Furthermore, ANIT significantly decreased bile acid synthesis related gene expressions, and increased expression of bile acid transporters in liver. Continuous treatment with GPS attenuated ANIT-induced acute cholestasis as well as liver injury and correct the dyshomeostasis of bile acids induced by ANIT. Our data showed that GPS significantly upregulated the hepatic mRNA levels of synthesis enzymes (Cyp8b1 and Cyp27a1) and transporters (Mrp4 Mdr1 and Ost-ÎČ) as well as ileal bile acid circulation mediators (Asbt and Fgf15), accompanied by serum and hepatic bile acid levels decrease and further urinary and fecal bile acid levels increase.ConclusionGPS can change bile acids metabolism which highlights its importance in mitigating cholestasis, resulting in the marked decrease of intracellular bile acid pool back toward basal levels. And the protective mechanism was associated with regulation of bile acids-related transporters, but the potential mechanism warrants further investigation

    Understanding the Role of Coordinatively Unsaturated Al3+ Sites on Nanoshaped Al2O3 for Creating Uniform Ni–Cu Alloys for Selective Hydrogenation of Acetylene

    Get PDF
    Acknowledgments This work was financially supported by the National Key R&D Program of China (2021YFB3801600), the National Natural Science Foundation of China (22218017), and the Fundamental Research Funds for the Central Universities (buctrc201921, JD2223). We acknowledge the Beijing Synchrotron Radiation Facility (BSRF) for providing the experimental resources for XAS experiments.Peer reviewedPostprin

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Bees in China: A Brief Cultural History

    Get PDF

    An Accurate Circuit Model for the Statistical Behavior of InP/InGaAs SPAD

    No full text
    In the field of near-infrared weak light detection, an InP/InGaAs single-photon avalanche diode (SPAD) is preferred due to the advantages of high sensitivity, low cost and room-temperature operation. To properly simulate and optimize the SPAD’s front-end circuit, a comprehensive and compact behavior model of the InP/InGaAs SPAD is normally required to accurately describe the statistical behavior of the detectors. In this paper, an InP/InGaAs SPAD analytical model is constructed, which not only includes the direct current (DC) and alternating current (AC) behavior simulating the avalanche and quenching processes, but also describes the dark count, after-pulsing and photon detection efficiency. For dark count noise, three important generation mechanisms are considered, including thermal generation, trap-assisted tunneling and band-to-band tunneling. The model described by the Verilog-A hardware description language (HDL) can be directly implemented in the commercial circuit simulator. A gated mode, passive quenching and recharging circuit is used to simulate and verify the developed model. The simulation results are in good agreement with the reported test data, demonstrating the accuracy of the developed InP/InGaAs SPAD model

    Application of Soluplus to Improve the Flowability and Dissolution of Baicalein Phospholipid Complex

    No full text
    In this study, a novel ternary complex system (TCS) composed of baicalein, phospholipids, and Soluplus was prepared to improve the flowability and dissolution for baicalein phospholipid complex (BPC). TCS was characterized using differential scanning calorimetry (DSC), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The flowability, solubility, oil–water partition coefficient, in vitro dissolution, and in vivo pharmacokinetics of the system were also evaluated. DSC, IR, PXRD, and SEM data confirmed that the crystal form of baicalein disappeared in BPC and TCS. Furthermore, the angle of repose of TCS of 35° indicated an improvement in flowability, and solubility increased by approximately eight-fold in distilled water when TCS was compared with BPC (41.00 ± 4.89 ÎŒg/mL vs. 5.00 ± 0.16 ÎŒg/mL). Approximately 91.24% of TCS was released at the end of 60 min in 0.5% SDS (pH = 6.8), which suggested that TCS could improve the dissolution velocity and extent. Moreover, TCS exhibited a considerable enhancement in bioavailability with higher peak plasma concentration (25.55 ÎŒg/mL vs. 6.05 ÎŒg/mL) and increased AUC0–∞ (62.47 ÎŒg·h/mL vs. 50.48 ÎŒg·h/mL) with 123.75% relative bioavailability compared with BPC. Thus, Soluplus achieved the purpose of improving the flowability and solubility of baicalein phospholipid complexes. The application of Soluplus to phospholipid complexes has great potential

    Comparative Study on Kinetics of Ethylene and Propylene Polymerizations with Supported Ziegler–Natta Catalyst: Catalyst Fragmentation Promoted by Polymer Crystalline Lamellae

    No full text
    The kinetic behaviors of ethylene and propylene polymerizations with the same MgCl2-supported Ziegler⁻Natta (Z⁻N) catalyst containing an internal electron donor were compared. Changes of polymerization activity and active center concentration ([C*]) with time in the first 10 min were determined. Activity of ethylene polymerization was only 25% of that of propylene, and the polymerization rate (Rp) quickly decayed with time (tp) in the former system, in contrast to stable Rp in the latter. The ethylene system showed a very low [C*]/[Ti] ratio (<0.6%), in contrast to a much higher [C*]/[Ti] ratio (1.5%⁻4.9%) in propylene polymerization. The two systems showed noticeably different morphologies of the nascent polymer/catalyst particles, with the PP/catalyst particles being more compact and homogeneous than the PE/catalyst particles. The different kinetic behaviors of the two systems were explained by faster and more sufficient catalyst fragmentation in propylene polymerization than the ethylene system. The smaller lamellar thickness (<20 nm) in nascent polypropylene compared with the size of nanopores (15⁻25 nm) in the catalyst was considered the key factor for efficient catalyst fragmentation in propylene polymerization, as the PP lamellae may grow inside the nanopores and break up the catalyst particles

    Synthesis and Bioactivities of Marine Pyran-Isoindolone Derivatives as Potential Antithrombotic Agents

    No full text
    2,5-Bis-[8-(4,8-dimethyl-nona-3,7-dienyl)-5,7-dihydroxy-8-methyl-3-keto-1,2,7,8-teraahydro-6H-pyran[a]isoindol-2-yl]-pentanoic acid (FGFC1) is a marine pyran-isoindolone derivative isolated from a rare marine microorganism Stachybotrys longispora FG216, which showed moderate antithrombotic(fibrinolytic) activity. To further enhance its antithrombotic effect, a series of new FGFC1 derivatives (F1–F7) were synthesized via chemical modification at C-2 and C-2â€Č phenol groups moieties and C-1″ carboxyl group. Their fibrinolytic activities in vitro were evaluated. Among the derivatives, F1–F4 and F6 showed significant fibrinolytic activities with EC50 of 59.7, 87.1, 66.6, 82.8, and 42.3 ÎŒM, respectively, via enhancement of urokinase activity. Notably, derivative F6 presented the most remarkable fibrinolytic activity (2.72-fold than that of FGFC1). Furthermore, the cytotoxicity of derivative F6 was tested as well as expression of Fas/Apo-1 and IL-1 on HeLa cells. The results showed that, compared to FGFC1, derivative F6 possessed moderate cytotoxicity and apoptotic effect on HeLa cells (statistical significance p > 0.1), making F6 a potential antithrombotic agent towards clinical application
    • 

    corecore