110 research outputs found

    Large yield production of high mobility freely suspended graphene electronic devices on a PMGI based organic polymer

    Get PDF
    The recent observation of fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron-electron interaction dynamics. However, the technique used currently for the fabrication of such high mobility devices has several drawbacks. The most important is that the contact materials available for electronic devices are limited to only a few metals (Au, Pd, Pt, Cr and Nb) since only those are not attacked by the reactive acid (BHF) etching fabrication step. Here we show a new technique which leads to mechanically stable suspended high mobility graphene devices which is compatible with almost any type of contact material. The graphene devices prepared on a polydimethylglutarimide based organic resist show mobilities as high as 600.000 cm^2/Vs at an electron carrier density n = 5.0 10^9 cm^-2 at 77K. This technique paves the way towards complex suspended graphene based spintronic, superconducting and other types of devices.Comment: 14 pages, 4 figure

    Location-specific nanoplasmonic sensing of biomolecular binding to lipid membranes with negative curvature

    Get PDF
    The biochemical processes of cell membranes are sensitive to the geometry of the lipid bilayer. We show how plasmonic "nanowells" provide label-free real-time analysis of molecules on membranes with detection of preferential binding at negative curvature. It is demonstrated that norovirus accumulate in invaginations due to multivalent interactions with glycosphingolipids

    What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research

    Get PDF
    Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non-linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes

    High figure of merit (FOM) of Bragg modes in Au-coated nanodisk arrays for plasmonic sensing

    Get PDF
    We report that gold-coated nanodisk arrays of nearly micron periodicity have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface-enhanced Raman scattering (SERS), large scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays were covered with a gold layer to excite the Bragg modes (BM) which are the propagative surface plasmons localized by the diffraction from the disk array. This generated surface-guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method (3D FEM). The optimal gold-coated nanodisk arrays were applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they were integrated to a 96-well plate reader for detection of IgY proteins in the nM range in PBS. The potential for sensing in biofluids was assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons (SPPs) and comparable to more complex nanostructures, demonstrating that sub-wavelength features are not necessary for high performance plasmonic sensing

    Untersuchungen zur Bedeutung der Verkehrserschliessung fuer Standortqualitaeten

    No full text
    Available from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel B 285854 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Abschaetzung der raeumlichen Verteilung oeffentlicher Finanzstroeme: Bericht ueber die Ergebnisse eines Forschungsvorhabens Regionalisierung raumwirksamer Finanzstroeme

    No full text
    SIGLEAvailable from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel B 275323 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Ultrathin Suspended Nanopores with Surface Plasmon Resonance Fabricated by Combined Colloidal Lithography and Film Transfer

    No full text
    Suspended plasmonic nanopores in ultrathin film layers were fabricated through a simple and widely applicable method combining colloidal lithography and thin film transfer, which allows mass production of short-range ordered nanopore arrays on a large scale. By this combined method, mechanically stable and flexible free-standing nanopore membranes with a thickness down to 15–30 nm were produced. The plasmon resonances of the ultrathin plasmonic nanopores fabricated in AlN/Au/AlN trilayer and single layer Au membranes were tuned to lie in the vis–NIR wavelength range by properly designing their dimensions. The optical responses to the refractive index changes were tested and applied to adlayer sensing. The trilayer nanopore membrane showed a unique property to support water only on one side of the membrane, which was confirmed by the resonance shift and comparison with numerical simulation. Pore size reduction down to 10 nm can be achieved through additional material deposition. The filtering function of such pore-size-reduced conical shaped nanofunnels has also been demonstrated. The presented nanopore fabrication method offers new platforms for ultrathin nanopore sensing or filtering devices with controlled pore-size and optical properties. The film transfer technique employed in this work would enable the transformation of any substrate-based nanostructures to free-standing membrane based devices without complicated multiple etching processes
    • …
    corecore