156 research outputs found

    The role of reactive oxygen intermediates in experimental coccidioidomycois in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coccidioidomycosis is usually a self-limited infection in immunocompentent people. In immunocompentent human beings second infections due to <it>Coccidioides </it>are very rare, indicating that recovery from infection results in protective immunity. In experimental animals, immunization with several different proteins or attenuated mutants protects against a virulent challenge. To explore what mechanisms are responsible for protective immunity, we investigated the course of <it>Coccidioides </it>infection in the gp91<sup>phox </sup>knock out mouse that has a defect in the oxidative burst that results in chronic granulomatous disease.</p> <p>Results</p> <p>We found that the gp91<sup>phox </sup>knock out mice were somewhat more resistant to intraperitoneal infection and equally as resistant to low dose intranasal infection, but slightly more susceptible to high dose intranasal infection compared to control mice. The gp91<sup>phox </sup>knock out mice made a more robust inflammatory response to infection than controls, as measured by histology and production of inflammatory cytokines. The gp91<sup>phox </sup>knock out mice were as protected by immunization with the recombinant <it>Coccidioides </it>protein Ag2/PRA as the controls were against either intraperitoneal or intranasal infection. <it>Coccidioides immitis </it>arthroconidia and spherules were significantly more resistant to H<sub>2</sub>O<sub>2 </sub>treatment in vitro than <it>Aspergillus fumigatus </it>spores.</p> <p>Conclusion</p> <p>These data suggest that oxidative burst may not be required for protective immunity to coccidioidomycois.</p

    A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella.

    Get PDF
    Bacterial pathogens causing systemic disease commonly evolve from organisms associated with localized infections but differ from their close relatives in their ability to overcome mucosal barriers by mechanisms that remain incompletely understood. Here we investigated whether acquisition of a regulatory gene, tviA, contributed to the ability of Salmonella enterica serotype Typhi to disseminate from the intestine to systemic sites of infection during typhoid fever. To study the consequences of acquiring a new regulator by horizontal gene transfer, tviA was introduced into the chromosome of S. enterica serotype Typhimurium, a closely related pathogen causing a localized gastrointestinal infection in immunocompetent individuals. TviA repressed expression of flagellin, a pathogen associated molecular pattern (PAMP), when bacteria were grown at osmotic conditions encountered in tissue, but not at higher osmolarity present in the intestinal lumen. TviA-mediated flagellin repression enabled bacteria to evade sentinel functions of human model epithelia and resulted in increased bacterial dissemination to the spleen in a chicken model. Collectively, our data point to PAMP repression as a novel pathogenic mechanism to overcome the mucosal barrier through innate immune evasion

    Biology and Clinical Significance of Virulence Plasmids in Salmonella Serovars

    Get PDF
    Non-typhoid Salmonella strains containing virulence plasmids are highly associated with bacteremia and disseminated infection in humans. These plasmids are found in Salmonella serovars adapted to domestic animals, such as Salmonella dublin and Salmonella choleraesuis, as well as in the widely distributed pathogens Salmonella typhimurium and Salmonella enteritidis. Although virulence plasmids differ between serovars, all contain a highly conserved 8-kb region containing the spv locus that encodes the spvR regulatory gene and four structural spvABCD genes. Studies in mice suggest that the spv genes enhance the ability of Salmonella strains to grow within cells of the reticuloendothelial system. The spv genes are not expressed during exponential growth in vitro but are rapidly induced following entry of Salmonella strains into mammalian cells, including macrophages. Transcription of the spv genes is controlled by the stationary-phase (T factor RpoS, and mutations in RpoS abolish virulence. These studies suggest that the ability of Salmonella strains to respond to starvation stress in the host tissues is an essential component of virulenc

    Microbes do not follow the elevational diversity patterns of plants and animals

    Get PDF
    The elevational gradient in plant and animal diversity is one of the most widely documented patterns in ecology and, although no consensus explanation exists, many hypotheses have been proposed over the past century to explain these patterns. Historically, research on elevational diversity gradients has focused almost exclusively on plant and animal taxa. As a result, we do not know whether microbes exhibit elevational gradients in diversity that parallel those observed for macroscopic taxa. This represents a key knowledge gap in ecology, especially given the ubiquity, abundance, and functional importance of microbes. Here we show that, across a montane elevational gradient in eastern Peru, bacteria living in three distinct habitats (organic soil, mineral soil, and leaf surfaces) exhibit no significant elevational gradient in diversity (r2 0.1 in all cases), in direct contrast to the significant diversity changes observed for plant and animal taxa across the same montane gradient (r2 > 0.75, P < 0.001 in all cases). This finding suggests that the biogeographical patterns exhibited by bacteria are fundamentally different from those of plants and animals, highlighting the need for the development of more inclusive concepts and theories in biogeography to explain these disparities

    Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 3 (2018): e00167-18, doi:10.1128/mSystems.00167-18.Soil bacteria are key to ecosystem function and maintenance of soil fertility. Leveraging associations of current geographic distributions of bacteria with historic climate, we predict that soil bacterial diversity will increase across the majority (∼75%) of the Tibetan Plateau and northern North America if bacterial communities equilibrate with existing climatic conditions. This prediction is possible because the current distributions of soil bacteria have stronger correlations with climate from ∼50 years ago than with current climate. This lag is likely associated with the time it takes for soil properties to adjust to changes in climate. The predicted changes are location specific and differ across bacterial taxa, including some bacteria that are predicted to have reductions in their distributions. These findings illuminate the widespread potential of climate change to influence belowground diversity and the importance of considering bacterial communities when assessing climate impacts on terrestrial ecosystems.This work was supported by the Strategic Priority Research Program (XDB15010101, XDA05050404) of the Chinese Academy of Sciences, the National Program on Key Basic Research Project (2014CB954002, 2014CB954004), the National Natural Science Foundation of China (41701298, 41371254), the “135” Plan and Frontiers Projects of Institute of Soil Science (ISSASIP1641), and the National Science and Technology Foundation project (2015FY110100). J.A.G. was supported by the U.S. Dept. of Energy under contract DE-AC02-06CH11357. N.F. was supported by a grant from the National Science Foundation (DEB-0953331). K.S.P. and J.L. were supported by the National Science Foundation (DMS-1069303), the Gordon and Betty Moore Foundation (grant no. 3300), the Gladstone Institutes, and a gift from the San Simeon Fund

    Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity

    Get PDF
    Golden color imparted by carotenoid pigments is the eponymous feature of the human pathogen Staphylococcus aureus. Here we demonstrate a role of this hallmark phenotype in virulence. Compared with the wild-type (WT) bacterium, a S. aureus mutant with disrupted carotenoid biosynthesis is more susceptible to oxidant killing, has impaired neutrophil survival, and is less pathogenic in a mouse subcutaneous abscess model. The survival advantage of WT S. aureus over the carotenoid-deficient mutant is lost upon inhibition of neutrophil oxidative burst or in human or murine nicotinamide adenine dinucleotide phosphate oxidase–deficient hosts. Conversely, heterologous expression of the S. aureus carotenoid in the nonpigmented Streptococcus pyogenes confers enhanced oxidant and neutrophil resistance and increased animal virulence. Blocking S. aureus carotenogenesis increases oxidant sensitivity and decreases whole-blood survival, suggesting a novel target for antibiotic therapy

    Neither dectin-2 nor the mannose receptor is required for resistance to Coccidioides immitis in mice

    Get PDF
    ABSTARCT: We investigated the roles of the mannose receptor (MR) and Dectin-2 in resistance to pulmonary coccidioidomycosis in C57BL/6 (B6) mice and in the interaction of myeloid cells with spherules, using B6 mice with targeted mutations in Mrc1 and Clec4n. Spherules are the tissue form of Coccidioides, and we determined that the MR on bone marrow-derived dendritic cells (BMDC) was important for recognition of spherules (formalin-killed spherules [FKS]) and for secretion of interleukin 10 (IL-10) and proinflammatory cytokines in response to FKS by both elicited macrophages and BMDC. Infected MR knockout (KO) mice produced more IL-10 in their lungs than did B6 mice, and MR KO mice also made more protective Th-17 cytokines. In contrast to the MR, Dectin-2 was not required for recognition of FKS by BMDC or for the production of cytokines by BMDC in response to FKS. However, Dectin-2 KO was required for stimulation of elicited peritoneal macrophages. Despite that, lung cytokine levels were not significantly different in Dectin-2 KO mice and B6 mice 14 days after infection, except for IL-1β, which was higher in Dectin-2 KO lungs. Although both Dectin-2(-/-) and MR(-/-) myeloid cells had reduced proinflammatory cytokine responses to FKS in vitro, neither MR nor Dectin-2 deficiency reduced the resistance of B6 mice to pulmonary coccidioidomycosis

    A Communal Catalogue Reveals Earth\u27s Multiscale Microbial Diversity

    Get PDF
    Our growing awareness of the microbial world\u27s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth\u27s microbial diversity
    corecore