145 research outputs found

    Differential expression of sheep beta-defensin-1 and -2 and interleukin 8 during acute Mannheimia haemolytica pneumonia

    Get PDF
    Beta-defensins are antimicrobial peptides produced by several cell types, including respiratory epithelia and leukocytes. Expression of some beta-defensins is increased by bacterial-induced inflammatory responses whereas expression of other beta-defensins is constitutive. Two beta-defensins are expressed in lungs of sheep (sheep beta-defensin-1 and -2; SBD-1/-2) and expression of SBD-1 is increased during parainfluenza virus type 3 (PI-3) infection. The effect of Mannheimia haemolytica, a Gram-negative bacteria known to induce expression of bovine beta-defensins and NF-kappa B in lung, has not been determined for SBD-1/-2. In this study, different concentrations of M. haemolytica were inoculated into pulmonary bronchi of lambs. SBD-1 and SBD-2 mRNA levels detected by real time reverse transcriptase polymerase chain reaction in lung homogenates did not increase. In fact, SBD-1 mRNA levels were significantly decreased with the highest administered inoculum concentration (109). In contrast, mRNA levels of interleukin-8 (IL-8) were significantly increased over controls and progressively increased with M. haemolytica concentrations. Co-inoculation of M. haemolytica with xylitol, an osmotic agent, did not alter mRNA levels of SBD-1, SBD-2 or IL-8. SBD-1 mRNA expression was detected in lung epithelia, but not in leukocytes. This study suggests that SDB-1 expression occurs in epithelia and decreases during severe bacterial pneumonia, which is in contrast to the increase that occurs with PI-3 infection

    Transepithelial migration of neutrophils into the lung requires TREM-1

    Get PDF
    Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens. In the setting of infection, neutrophil triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory signaling. Here we demonstrate for the first time that TREM-1 also plays an important role in transepithelial migration of neutrophils into the airspace. We developed a TREM-1/3–deficient mouse model of pneumonia and found that absence of TREM-1/3 markedly increased mortality following Pseudomonas aeruginosa challenge. Unexpectedly, TREM-1/3 deficiency resulted in increased local and systemic cytokine production. TREM-1/3–deficient neutrophils demonstrated intact bacterial killing, phagocytosis, and chemotaxis; however, histologic examination of TREM-1/3–deficient lungs revealed decreased neutrophil infiltration of the airways. TREM-1/3–deficient neutrophils effectively migrated across primary endothelial cell monolayers but failed to migrate across primary airway epithelia grown at the air-liquid interface. These data define a new function for TREM-1 in neutrophil migration across airway epithelial cells and suggest that it amplifies inflammation through targeted neutrophil migration into the lung

    Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways

    Get PDF
    Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources –including glucose– in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung

    Gene and cell therapy for cystic fibrosis: From bench to bedside

    Get PDF
    Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development, the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the therapeutic potential of stem cells for CF lung disease. (C) 2011 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved
    • …
    corecore