85 research outputs found

    Conformational transitions of membrane-bound HIV-1 fusion peptide

    Get PDF
    AbstractThe human immunodeficiency virus type-1 (HIV-1) fusion peptide (FP) functions as a non-constitutive membrane anchor that translocates into membranes during envelope glycoprotein-induced fusion. Here, by means of infrared spectroscopy (IR) and of various bilayer-perturbation assays, we describe the peptide conformations that are accessible to its membrane-bound state and the transitions occurring between them. The peptide underwent a conformational transition from a predominantly α-helical structure to extended β-type strands by increasing peptide concentration in 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) vesicles. A comparable transition was observed at a fixed 1:100 peptide-to-lipid ratio when calcium was added to vesicles containing prebound α-helical peptide. Cation binding induced an increase in the amount of H-bonded carbonyls within the interfacial region of POPG. Calcium-promoted α→β conversion in membranes correlated with the closure of preformed lytic pores and took place in dispersed (nonaggregated) vesicles doped with poly(ethylene glycol)–lipid conjugates, showing that the conformational transition was independent of vesicle aggregation. We conclude that the target membrane conditions modulate the eventual structure adopted by the HIV-1 FP. Conformational polymorphism of the inserted peptide may contribute to the flexibility of the fusogenic complex during the fusion reaction cycle, and/or may be related to target membrane perturbation at the fusion locus

    Single-molecule conformational dynamics of viroporin ion channels regulated by lipid-protein interactions

    Get PDF
    Classic swine fever is a highly contagious and often fatal viral disease that is caused by the classical swine fever virus (CSFV). Protein p7 of CFSV is a prototype of viroporin, a family of small, highly hydrophobic proteins postulated to modulate virus-host interactions during the processes of virus entry, replication and assembly. It has been shown that CSFV p7 displays substantial ion channel activity when incorporated into membrane systems, but a deep rationalization of the size and dynamics of the induced pores is yet to emerge. Here, we use high-resolution conductance measurements and current fluctuation analysis to demonstrate that CSFV p7 channels are ruled by equilibrium conformational dynamics involving protein-lipid interactions. Atomic force microscopy (AFM) confirms the existence of a variety of pore sizes and their tight regulation by solution pH. We conclude that p7 viroporin forms subnanometric channels involved in virus propagation, but also much larger pores (1–10 nm in diameter) with potentially significant roles in virus pathogenicity. Our findings provide new insights into the sources of noise in protein electrochemistry and demonstrate the existence of slow complex dynamics characteristic of crowded systems like biomembrane surfaces

    Juvenile hormone biosynthesis in adult Blattella germanica requires nuclear receptors Seven-up and FTZ-F1

    Get PDF
    In insects, the transition from juvenile development to the adult stage is controlled by juvenile hormone (JH) synthesized from the corpora allata (CA) glands. Whereas a JH-free period during the last juvenile instar triggers metamorphosis and the end of the growth period, the reappearance of this hormone after the imaginal molt marks the onset of reproductive adulthood. Despite the importance of such transition, the regulatory mechanism that controls it remains mostly unknown. Here, using the hemimetabolous insect Blattella germanica, we show that nuclear hormone receptors Seven-up-B (BgSvp-B) and Fushi tarazu-factor 1 (BgFTZ-F1) have essential roles in the tissue-and stage-specific activation of adult CA JH-biosynthetic activity. Both factors are highly expressed in adult CA cells. Moreover, RNAi-knockdown of either BgSvp-B or BgFTZ-F1 results in adult animals with a complete block in two critical JH-dependent reproductive processes, vitellogenesis and oogenesis. We show that this reproductive blockage is the result of a dramatic impairment of JH biosynthesis, due to the CA-specific reduction in the expression of two key JH biosynthetic enzymes, 3-hydroxy-3-methylglutaryl coenzyme A synthase-1 (BgHMG-S1) and HMG-reductase (BgHMG-R). Our findings provide insights into the regulatory mechanisms underlying the specific changes in the CA gland necessary for the proper transition to adulthood.Support for this research was provided by the Spanish MINECO (grants BFU2009-10571 and CGL2014-55786-P to D.M. and CGL2012-36251 and CGL2015-64727-P to X.B.) and by the Catalan Government (2014 SGR 619 to D.M., J.L.M. and X.B.). The research has also benefited from FEDER funds. F.B.-C. is a recipient of a pre-doctoral research Grant from the MICINN. C.N. is a recipient of a postdoctoral research grant from CSIC. O.M. is recipient of a pre-doctoral research grant from Generalitat de Catalunya.Peer Reviewe

    Mutation-induced changes of transmembrane pore size revealed by combined ion-channel conductance and single vesicle permeabilization analyses

    Get PDF
    Permeabilization of the Endoplasmic Reticulum (ER) is instrumental in the progression of host-cell infection by many viral pathogens. We have described that permeabilization of ER model membranes by the pore-forming domain of the Classical Swine Fever Virus (CSFV) p7 protein depends on two sequence determinants: the C-terminal transmembrane helix, and the preceding polar loop that regulates its activity. Here, by combining ion-channel activity measurements in planar lipid bilayers with imaging of single Giant Unilamellar Vesicles (GUVs), we demonstrate that point substitutions directed to conserved residues within these regions affect ER-like membrane permeabilization following distinct mechanisms. Whereas the polar loop appeared to be involved in protein insertion and oligomerization, substitution of residues predicted to face the lumen of the pore inhibited large conducting channels (>1 nS) over smaller ones (120 pS). Quantitative analyses of the ER-GUV distribution as a function of the solute size revealed a selective inhibition for the permeation of solutes with sizes larger than 4 kDa, further demonstrating that the mutation targeting the transmembrane helix prevented formation of the large pores. Collectively, our data support the idea that the pore-forming domain of p7 may assemble into finite pores with approximate diameters of 1 and 5 nm. Moreover, the observation that the mutation interfering with formation of the larger pores can hamper virus production without affecting ER localization or homo-oligomerization, suggests prospective strategies to block/attenuate pestiviruses

    Functional organization of the HIV lipid envelope

    Get PDF
    The chemical composition of the human immunodeficiency virus type 1 (HIV-1) membrane is critical for fusion and entry into target cells, suggesting that preservation of a functional lipid bilayer organization may be required for efficient infection. HIV-1 acquires its envelope from the host cell plasma membrane at sites enriched in raft-type lipids. Furthermore, infectious particles display aminophospholipids on their surface, indicative of dissipation of the inter-leaflet lipid asymmetry metabolically generated at cellular membranes. By combining two-photon excited Laurdan fluorescence imaging and atomic force microscopy, we have obtained unprecedented insights into the phase state of membranes reconstituted from viral lipids (i.e., extracted from infectious HIV-1 particles), established the role played by the different specimens in the mixtures, and characterized the effects of membrane-active virucidal agents on membrane organization. In determining the molecular basis underlying lipid packing and lateral heterogeneity of the HIV-1 membrane, our results may help develop compounds with antiviral activity acting by perturbing the functional organization of the lipid envelope

    Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein

    Get PDF
    The structural determinants underlying the functionality of viral internal fusion peptides (IFPs) are not well understood. We have compared EBOwt (GAAIGLAWIPY- FGPAAE), representing the IFP of the Ebola fusion protein GP, and EBOmut (GAAIGLAWIPYFGRAAE) derived from a non-functional mutant with conserved Pro537 substituted by Arg. P537R substitution did not abrogate peptide-membrane association, but interfered with the ability to induce bilayer destabilization. Structural determinations suggest that Pro537 is required to preserve a membrane-perturbing local conformation in apolar environments

    Exposure of the HIV-1 broadly neutralizing antibody 10E8 MPER epitope on the membrane surface by gp41 transmembrane domain scaffolds

    Get PDF
    The 10E8 antibody achieves near-pan neutralization of HIV-1 by targeting the remarkably conserved gp41 membrane-proximal external region (MPER) and the connected transmembrane domain (TMD) of the HIV-1 envelope glycoprotein (Env). Thus, recreating the structure that generates 10E8-like antibodies is a major goal of the rational design of anti-HIV vaccines. Unfortunately, high-resolution information of this segment in the native Env is lacking, limiting our understanding of the behavior of the crucial 10E8 epitope residues. In this report, two sequences, namely, MPER-TMD1 (gp41 residues 671–700) and MPER-TMD2 (gp41 residues 671–709) were compared both experimentally and computationally, to assess the TMD as a potential membrane integral scaffold for the 10E8 epitope. These sequences were selected to represent a minimal (MPER-TMD1) or full-length (MPER-TMD2) TMD membrane anchor according to mutagenesis results reported by Yue et al. (2009) J. Virol. 83, 11,588. Immunochemical assays revealed that MPER-TMD1, but not MPER-TMD2, effectively exposed the MPER C-terminal stretch, harboring the 10E8 epitope on the surface of phospholipid bilayers containing a cholesterol concentration equivalent to that of the viral envelope. Molecular dynamics simulations, using the recently resolved TMD trimer structure combined with the MPER in a cholesterol-enriched model membrane confirmed these results and provided an atomistic mechanism of epitope exposure which revealed that TMD truncation at position A700 combined with N-terminal addition of lysine residues positively impacts epitope exposure. Overall, these results provide crucial insights into the design of effective MPER-TMD derived immunogens

    Patterns of Differentially Expressed circRNAs in Human Thymocytes

    Get PDF
    Circular RNAs (circRNAs) are suggested to play a discriminative role between some stages of thymocyte differentiation. However, differential aspects of the stage of mature single-positive thymocytes remain to be explored. The purpose of this study is to investigate the differential expression pattern of circRNAs in three different development stages of human thymocytes, including mature single-positive cells, and perform predictions in silico regarding the ability of specific circRNAs when controlling the expression of genes involved in thymocyte differentiation. We isolate human thymocytes at three different stages of intrathymic differentiation and determine the expression of circRNAs and mRNA by RNASeq. We show that the differential expression pattern of 50 specific circRNAs serves to discriminate between the three human thymocyte populations. Interestingly, the downregulation of RAG2, a gene involved in T-cell differentiation in the thymus, could be simultaneously controlled by the downregulation of two circRNASs (hsa_circ_0031584 and hsa_circ_0019079) through the hypothetical liberation of hsa-miR-609. Our study provides, for the first time, significant insights into the usefulness of circRNAs in discriminating between different stages of thymocyte differentiation and provides new potential circRNA-miRNA-mRNA networks capable of controlling the expression of genes involved in T-cell differentiation in the thymus.This work was financed by grants from the Spanish Ministry of Science, Innovation and Universities (MCIU)(RTI2018- 093330-B-I00; MCIU/FEDER, EU), Ramón Areces Foundation (CIVP19S7917); Autonomous Community of Madrid, Spain (B2017/BMD-3778; LINFOMAS-CM); the Spanish Association Against Cancer (AECC, 2018; PROYE18054PIRI); and the Spanish Ministry (Juan de la Cierva Grant IJCI-2016-29155). Institutional grants from the Fundación Ramón Areces and Banco de Santander to the CBMSO are also acknowledged.S
    corecore