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Abstract: Circular RNAs (circRNAs) are suggested to play a discriminative role between some stages
of thymocyte differentiation. However, differential aspects of the stage of mature single-positive thy-
mocytes remain to be explored. The purpose of this study is to investigate the differential expression
pattern of circRNAs in three different development stages of human thymocytes, including mature
single-positive cells, and perform predictions in silico regarding the ability of specific circRNAs
when controlling the expression of genes involved in thymocyte differentiation. We isolate human
thymocytes at three different stages of intrathymic differentiation and determine the expression of
circRNAs and mRNA by RNASeq. We show that the differential expression pattern of 50 specific
circRNAs serves to discriminate between the three human thymocyte populations. Interestingly, the
downregulation of RAG2, a gene involved in T-cell differentiation in the thymus, could be simultane-
ously controlled by the downregulation of two circRNASs (hsa_circ_0031584 and hsa_circ_0019079)
through the hypothetical liberation of hsa-miR-609. Our study provides, for the first time, significant
insights into the usefulness of circRNAs in discriminating between different stages of thymocyte
differentiation and provides new potential circRNA–miRNA–mRNA networks capable of controlling
the expression of genes involved in T-cell differentiation in the thymus.

Keywords: human thymocytes; circRNAs; circRNA–miRNA–mRNA controlling networks

1. Introduction

Circular RNAs (circRNAs) are stable single-stranded RNA molecules that form a
covalently closed continuous loop. Based on the source of the genome and biogenesis
patterns, circRNAs are mainly divided into three groups: exonic circRNAs (EcircRNAs),
exonic-intronic circRNAs (EIciRNAs) and circular intronic RNAs (ciRNAs) [1–3]. They are
involved in multiple biological processes, functioning mainly through interactions with
microRNAs and proteins or by the expression of specific peptides [2,4–6]. Although details
of known circRNA-effector mechanisms and functions in physiology and many human
diseases are described in recent reviews [7–11], our understanding of the different roles in
normal physiological conditions is limited for the vast majority of identified circRNAs [12].
A better understanding of the mechanisms underlying the generation and functions of
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circRNAs in the maturational processes of human intrathymic thymocytes will help us
understand the physiological and pathological processes to which they are subjected and
prepare the pipeline for circRNA-based therapeutic intervention and the diagnosis of hu-
man hematological diseases in the future. Preliminary data exist on circRNA expression in
different peripheral blood cell populations [13,14]. The deregulation of circRNAs is shown
to be key in the development of T-cell acute lymphoblastic leukemia (T-ALL) and serves to
discriminate between some populations of normal thymocytes [15] but not all. This study
aims to investigate the expression patterns of differentially expressed circRNAs in three dif-
ferent development stages of human intrathymic thymocytes. Together with this, in silico
predictions are performed to determine the ability of differentially expressed circRNAs in
controlling the expression of coding genes involved in thymocyte differentiation.

2. Results and Discussion
2.1. Isolation of Human Thymocytes at Different Stages during Their Intrathymic Differentiation

As circRNAs are known to be expressed in tissue specifically [16], it should be no sur-
prise that circRNAs are also involved in this specific developmental process. However, not
much is known about circRNAs involved in human thymopoiesis. Normal thymopoiesis
is a strictly regulated developmental process that is initiated by early T-cell progenitors
(CD34+) migrating from the bone marrow into the thymus. Within this microenvironment,
distinct stages of T-cell development can be identified by a combination of cell surface
markers (CD34, CD4, CD8, CD3, etc.), and each of these stages contains a distinct tran-
scriptional profile [17–23]. On this premise, human postnatal thymocytes were isolated
from thymuses removed during the corrective congenital cardiac surgery of seven pedi-
atric patients aged between 1 month and 4 years old; none of the patients recruited for
this study had any chromosomal abnormalities, oncologic processes or genetic conditions
with a propensity to develop them. Intrathymic thymocytes were divided in three main
stages: early immature CD34+CD2− (ST1, Stage 1; 100% double negatives CD4−CD8−);
intermediate CD1A+ (ST2, Stage 2; 88% double-positive thymocytes CD4+CD8+); and
mature CD1A− thymocytes (ST3, Stage 3; 95% single positive thymocytes CD4+CD8− and
CD4−CD8+) (see Section 3 and Table S1 for details).

2.2. circRNAs Are Differentially Expressed during Thymocyte Differentiation

A total of 1004 circRNAs were detected in the nine samples analyzed (three replicates
for each of the three thymocyte populations), the vast majority being of the exon–exon
type (96.3%). To assess whether the expression levels of these circRNAs could be a useful
tool to differentiate thymocyte populations, we performed a hierarchical cluster analysis of
the sample expression profiling using the full linkage method to estimate the Euclidean
distance using the R package NbClust. The samples were segregated into three clusters cor-
responding to the three different populations of thymocytes (Figure 1A). An unsupervised
principal component analysis (PCA analysis) was also performed that separated thymocyte
populations, in the same way, pointing towards prominent differences in circular RNA
expression among them (Figure 1B,C). Pairwise comparisons between the circRNAs of the
three thymocyte populations revealed 50 circRNAs differentially expressed in at least one
pairwise comparison (ST2 vs. ST1, ST3 vs. ST1 and ST3 vs. ST2) (Figure 2A, Table S2); none
of which are found in the databases known to be associated with thymus differentiation.
The number of differentially expressed circRNAs between the three thymocyte popula-
tions are shown in a Venn diagram providing insight into the similarities and differences
(Figure 2B). Strikingly only the hsa_NEIL3_0001 was found to be expressed in the three
comparison sets. The hierarchical cluster analysis of sample expression profiles (z-score)
using only the 50 differentially expressed circRNAs also separated the samples into the
three populations of thymocytes (Figure 2C).
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Figure 1. Results of the cluster and principal component analyses. (A) Dendrogram of the cluster 

analysis solution; (B) Screen plot of the percentage of sample expression variability explained by the 

principal components/dimensions identified in the principal component analysis (PCA); (C) Graph 

of samples scores in the first two dimensions/principal components of the PCA analysis. The figures 

are colored in the replicas according to the three levels that make up the stages of thymocyte matu-

ration (ST1-3). 

Figure 1. Results of the cluster and principal component analyses. (A) Dendrogram of the cluster
analysis solution; (B) Screen plot of the percentage of sample expression variability explained by the
principal components/dimensions identified in the principal component analysis (PCA); (C) Graph
of samples scores in the first two dimensions/principal components of the PCA analysis. The
figures are colored in the replicas according to the three levels that make up the stages of thymocyte
maturation (ST1-3).
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Figure 2. Pairwise comparison analysis and differential expression of circRNAs. (A) Heatmap
representation depicting changes in the expression of the 50 circRNAs differentially expressed in at
least one pairwise comparison. The numbers in each box represent the fold changes (log2FC) calculated
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as the ratio of the read counts between the groups of samples compared. Color key interpretation is
indicated in the upper center part of the figure. Asterisks indicate a value that fulfills the two criteria
for significant differential expression; (B) Venn diagram depicting the overlap of the 50 circRNAs dif-
ferentially expressed in pairwise comparisons between the three thymocyte populations; (C) Heatmap
representing the expression of the 50 circRNAs differentially regulated in the thymocytes at the three
stages of intrathymic differentiation in each sample. Expression level (z-score) is represented as a
colored cell. The color of each of these cells depends on the circRNA expression level. A tricolor scale
is used: red color represents high expression, white represents medium expression and blue color
represents low expression. Color key interpretation is indicated in the upper left part of the figure.

2.3. Circular-to-Linear Expression Proportion

Interestingly, the circular-to-linear expression proportion (CLP), the proportion of
expression between the circular and linear isoforms, revealed that circular RNAs are
expressed less abundantly than their respective linear counterparts, with the exception
of hsa_RP11-563D10_0001, which exhibits the same number of circular and linear counts
in ST1 thymocytes (CLP: 0.5) (Table S2). Differences in CLP values for many circRNAs
suggest a certain degree of independence in the expression control of linear and circRNAs
(Figure 3). In any case, it seems that the function of the circRNAs is different from that of
their linear partners, as is evident in the case of HIPK3 [24].
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2.4. Validation of Selected circRNAs

To verify the reliability of the RNA-seq data, seven circRNAs were randomly selected
for further validation experiments. Convergent (for linear transcripts) and divergent (for
circular RNAs) specific primers were designed for RT-qPCR (Table S3) to verify the differen-
tial expression seen in the RNA-seq data. Quantification by qRT-PCR in ST1, ST2 and ST3
populations confirmed RNA-seq results for all tested mRNAs and circRNAs, supporting
data robustness and reproducibility. Significant deregulation of circRNAs was confirmed
(Figure 4). The comparison between the fold change data between the different populations
(ST1-ST2/ST1-ST3/ST2-ST3) and the qPCR data obtained when we performed a multiple
comparisons analysis (ANOVA) shows that there is a sufficiently robust correlation between
both methodologies (Table S4). The PCR products were visualized using a 2% Ethidium
Bromide agarose gel followed by band purification. Sanger sequencing was performed
to validate the PCR products, and the circRNA junctions were identified unambiguously
(Figure S2).
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Figure 4. qPCR validation of linears (mRNAs) and their counterparts circRNAs. Quantitative data are
presented as the mean ± standard deviation (SD). One-way ANOVA analysis and paired Student’s
t-test were used to assess significance among groups. Following one-way ANOVA, Tukey’s post
hoc test was performed. SPSS software (v27; SPSS, Inc., Chicago, IL, USA) was used to process all
statistical analyses. All tests were performed in triplicate (n = 3). A p-value < 0.05 was considered to
indicate a statistically significant difference. * Denotes a statistical significance.

2.5. Patterns of Differentially Expressed circRNAs

The expression patterns of the differentially expressed circRNAs (z-scores profiles by
populations of thymocytes) identified eight cohorts or clusters of circRNAs (Figure 5A),
which are shown in the boxplots of Figure 5B. Cluster 1 consist of hsa_circIKZF1_0001,
which shows a progressive increase in expression as thymocyte differentiation progresses
(Table S2). This circRNA is a T-cell specific circRNA in mature blood cell populations [14].
Cluster 3 includes four circRNAs, hsa_circHIPK3_0001 being one of them. This cluster
presents a pattern opposite to the previous one, in which expression decreases as thymocyte
differentiation progresses. Interestingly, a recent work reported that circHIPK3, but not
HIPK3 mRNA, could serve as a modulator of cell growth and cell proliferation in different
human cells by sponging multiple miRNAs in human cells [24]. Cluster 6 is a heteroge-
neous one that comprises 15 circRNAs, including hsa_circLEF1_0001, which is significantly
upregulated in the ST2 when compared to the other two stages (Table S2; Average Counts:
ST1: 3; ST2: 48; ST3: 12).
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Figure 5. Cluster sample and circRNA analysis using the 50 circRNAs differentially expressed in at
least one pairwise comparison. (A) Dendrogram of the solution from the hierarchical cluster analysis
of the expression profiles of the 50 circRNAs differentially expressed in pairwise comparisons between
the three thymocyte populations. (B) Boxplot showing the z-scores of the thymocyte populations in
each of the 8 clusters of circRNA identified in this study.

2.6. mRNAs Differentially Expressed during Thymocyte Differentiation

Since differentially expressed circRNAs could be controlling the expression of mRNAs
by acting as sponges for specific microRNAs, we determined the mRNA expression profiles
of the purified thymocyte populations at three different stages of maturation (SP1, SP2
and SP3). A total of 17,804 mRNAs were detected. Of them, 5103 were differentially
expressed mRNAs in any of the comparisons made (|log2FC| more than or equal to 1 and
p-value adjusted by a BH procedure (p.adjusted) score less than or equal to 0.05) (Table S6).
Notably, 180 of these genes were involved in T-cell differentiation. Our results indicated
that each thymic population was characterized by a distinct mRNA expression pattern,
which reflected the developmental relationships across maturation stages in T precursors.
Differentially expressed mRNAs among the three thymocyte populations are shown in
Table S5 (see Go Ontology column in Table S5).

2.7. In Silico Functional Outcome Prediction of Specific circRNAs Differential Expression

To identify potentially functional circRNA–miRNA–mRNA regulatory networks
(Table S7), we first predicted miRNA binding sites in circRNA sequences using CircInterac-
tome. Following, we identified miRNA–mRNA interactions using TargetScan as indicated
in the Section 3. A total of 1035 miRNA binding sites were predicted in the 35 circRNA
sequences that were identified in mirBase (available online: https://www.mirbase.org/
(accessed on 23 January 2021)) [25] out of the 50 circRNAs differentially expressed in this
study. Only 206 miRNAs binding sites showed a “context score percentile” more than 95,
identifying a total of 127 different miRNAs. A total of 285 target genes were identified

https://www.mirbase.org/
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for these miRNAs using TargetScan with a Cumulative.weighted.context score less than
or equal to −1. Only 66 of these genes were differentially expressed in any of the com-
parisons made. Interestingly, the expression patterns of these mRNAs (z-scores profiles
by populations of thymocytes) serve to discriminate between the three stages of thymo-
cyte differentiation (Figure 6). Finally, a total of 95 networks were constructed, merging
circRNA, miRNAs and the selected genes (Table S7). Of all these networks, 38 included a
circRNA very possibly acting as a miRNA sponge, 12 included a circRNA possibly acting as
a miRNA sponge and 45 did not include a circRNA acting as a miRNA sponge, according
to the criteria established and described above (Figure 7).
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appropriate number of clusters of identified mRNAs.
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Figure 7. mRNA–circRNA–miRNA networks. Networks including circRNAs “very possibly” acting
as miRNA sponge (Type 2) (A), “possibly” acting as miRNA sponge (Type 1) (B) and “not” acting as
miRNA sponge (Type 0) (C). The network type 2 consists of 14 circRNAs, 20 miRNAs and 29 genes
were generated by Cytoscape 3.9.1. The network Type 1consists of 7 circRNAs, 8 miRNAs and
12 genes and was generated by Cytoscape 3.9.1. The Network Type 0, consisting of 18 circRNAs,
26 miRNAs and 35 genes, was generated by Cytoscape 3.9.1.

Interestingly, the downregulation of the RAG2 gene (which encodes a protein involved
in the initiation of V(D)J recombination during T cell development) from ST1 to ST3 stages
could be simultaneously controlled by the downregulation of hsa_circ_0031584 (expressed
by ARHGAP5 R gene) and hsa_circ_0019079 (expressed by KIF20B gene) through the
hypothetical liberation of hsa-miR-609. Further experimental approaches would eventually
confirm the involvement of circRNAs in controlling genes directly involved in T-cell
differentiation in the thymus.

3. Materials and Methods
3.1. Patients’ Characteristics

The ages at the time of surgery were 1 week (1), 2 weeks (2), 4 weeks (1), 14 weeks
(1), 20 weeks (1) and 4 years and two months (1). Five of them were male and two were
female; two of the patients had Shone’s complex (a rare congenital cardiac malformation
characterized by a complex of four obstructive lesions in the left heart) and Tetralogy of
Fallot (is an obstruction of the pulmonary outflow tract, a ventricular septal defect (VSD)
due to misalignment, an overriding aorta and right ventricular hypertrophy) (for more
information see Table S1). The fact that there is no known association between these
pathologies and abnormalities in thymus development allowed us to include them in
the study. To determine whether segregation CD4/CD8 ratios were comparable between
different human samples at the ages used in this work, we performed a flow cytometric



Non-Coding RNA 2022, 8, 26 11 of 16

study of these samples. With the results obtained and taking into account the intra-
individual differences, we can assure that the population profiles of human cells from
pediatric thymuses used in this study have very similar population profiles and their
immunophenotypes were completely normal (Figure S1). In all cases, the informed consent
of the operation was signed by the legal representatives of the children in accordance with
the Declaration of Helsinki, in which it was specified that as a consequence of the operation,
the thymectomy would be performed. Institutional review board approval was obtained
for these studies (CEI 98-1825).

No deaths were recorded during the survey period. None of the patients required in-
tensive care because of immunologic complications, including acute or recurrent infectious
diseases, such as bacteremia and mediastinitis.

3.2. Isolation of Human Thymocytes at Different Stages of Differentiation

To isolate early immature thymocytes (ST1), cell suspensions were firstly enriched in
CD2− thymocytes using the sheep red blood cell technique [26,27]. From this population,
CD34+ cells were isolated with appropriate Ig-coated magnetic-activated MicroBeads using
autoMACS Pro (Miltenyi Biotec, Bergisch Gladbach, Germany). On the other hand, starting
from non-manipulated thymocytes, the CD1A+ (ST2) population was isolated with CD1A+
MicroBeads using autoMACS Pro and its immunophenotype CD4+CD8+ was determined
by flow cytometry. From the remaining CD1A− cell population, we selected the ST3 stage
that was sorted by possessing either CD4+ or CD8+ single-positive thymocytes using flow
cytometry. All the immunophenotypes of the thymocyte populations were magnetically
sorted and validated by flow cytometry using a FACSCalibur cytometer (Becton Dickinson,
San Diego, CA, USA) with the following antibodies: CD34-PE, CD8-APC and CD4-PE (all
from MACS Miltenyi Biotec), revealing more than 98% purification efficiency. In order to
have enough cells to carry out the studies, once they were fractionated, they were pooled
to obtain the ST1, ST2 and ST3 populations with which we worked.

3.3. RNA Isolation

Total RNA was obtained using TriPure Reagent (Roche Applied Science, Indianapolis,
IN, USA), following the manufacturer’s instructions. RNA integrity numbers (RIN) were
in the range of 7.2–9.8. Image analysis, per-cycle basecalling and quality score assignment
were performed with Illumina Real-Time Analysis software (Illumina, San Diego, CA, USA).

3.4. Quality Control and Trimming

High-quality RNA samples were used for high-depth Illumina total RNA sequencing
(RNA-seq) after ribosomal depletion with 3 replicates for each thymocyte population
(NIMGenetics and Helix BioS, Scientific Park of Madrid, Madrid, Spain). The RNA detection
and expression workflow carried out in this study allowed us to discover differentially
expressed circular RNAs and their linear counterparts (host genes). The quality control was
carried out with FastQC and Fastp [28]. From this stage, two pipelines were run to obtain
the mRNA expression arrays and the detection and quantification of circRNAs together
with their linear counterparts.

3.5. mRNA Pipeline

The aim of this step was to align the processed RNA-seq reads against the reference
genome using the HISAT2 alignment tool [29]. For the alignment, we used GRCh37/hg19,
Ensembl version 87. In this stage, the assembly of transcripts from which the transcriptional
expression of the samples can be estimated was carried out. Such expression was performed
using the StringTie suite [30]. This is a highly efficient assembler designed to align RNA-
seq data using a network flow algorithm. At the same time, it assembles and quantifies
expression levels for transcriptome features in a readable Ballgown-like format (via the
-B option). Expression pattern analysis makes it possible to identify and extract cohorts
of genes that behave in a coordinated manner with respect to the complete set of genes
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and associate it with a particular biological context [31–34]. This type of analysis provides
evidence of possible gene and/or functional interactions between genes co-expressed under
different conditions or over time.

3.6. circRNA Pipeline

The sequences that did not exceed the Q30 score and read less than 100 base pairs
in length were eliminated. The alignment of RNA-seq reads was established against the
reference genome (GRCh37/hg19, Ensembl version 87) and was performed with the STAR
alignment tool [35]. To carry out the initial exploratory analysis, we started from the
normalized expression matrices using the variance stabilizing transformation algorithm
(vst) of DESeq2 [36] and applying a local adjustment for circular and linear RNAs, taking
into account the variance in each case. FASTQ data were deposited in the NCBI Gene
Expression Omnibus and are accessible through GEO accession number GSE178889.

3.7. Quantification and Annotation of circRNAs

The quantification and annotation of circular RNAs and their linear counterparts was
performed using circTools [37] since it is one of the few bioinformatics tools that allows
the alignment of the sequences mates separately, allowing the detection of exonic, exonic-
intronic and intergenic circRNAs and helping to perform internal controls on the sample
itself for better identification of chimeric junctions.

3.8. Pairwise Comparations of circRNA and mRNA Expression among the Three
Thymocyte Populations

Pairwise comparations of circRNAs and mRNA expression among the three thymocyte
populations were carried out using the Wald statistic. For multiple comparisons, the p-value
was adjusted using the Benjamini–Hochberg (BH) procedure. We considered significant
differential expression when log2FC was greater than or equal 1 (in absolute numbers)
and when the p-value of contrasts adjusted using BH was less than 0.05. The circular-to-
linear expression proportion (CLP) was adapted from that provided by the R package
CircTest [38].

Differential expression analysis was performed using the DESeq2 package [36]. Other
parameters applied were an internal independent filter with a local model fit for circRNA
and a parametric fit for mRNA and a normalization ratio with the replacement of default
outliers, including the developmental stages of control thymocytes as a factor.

3.9. Functional Annotation of circRNAs

Several specific databases for circular RNAs were consulted, including CircFun-
Base [39], which uses data from Circular RNA Interactome, circBase, CIRCpedia, among
others and the circAtlas 2.0 database [40]. We used the nomenclature of the circAtlas 2.0
database (Available at: http://circatlas.biols.ac.cn (accessed on 20 July 2021)), although the
correspondence with the nomenclatures of other databases is available in Table S2.

3.10. mRNA-circRNA-miRNA Interaction Network Analysis

To visualize mRNA–circRNA–miRNA interaction network analysis, we used Cy-
toscape 3.9.1 software (Available at: https://www.cytoscape.org (accessed on 10 February
2022)) [41], a tool for identifying molecular interaction networks and biological pathways
and integrating these networks with annotations, gene expression profiles and other status
data. Within the tools menu, we used a section dedicated to Merge networks. Using its
editing tools, we identified mRNA, circRNA and miRNA with different colors and icons.

3.11. Retrotranscription and Polymerase Chain Reactions

Special divergent were designed for each circRNA. DNA was amplified using Immo-
lase Taq polymerase (Bioline USA Inc., Kenilworth, NJ, USA). The reaction parameters
were: 95 ◦C for 8 min; followed by 40 cycles of 95 ◦C for 1 min, an appropriate annealing

http://circatlas.biols.ac.cn
https://www.cytoscape.org
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temperature (according to the melting temperature of the primers) for 1 min and 72 ◦C for
2 min; and 72 ◦C for 10 min. The resulting PCR products were gel-purified (2% agarose
electrophoresis with ethidium bromide (EtBr)) with Wizard® SV Gel and a PCR Clean-Up
System (Promega, Madison, WI, USA). Sanger DNA sequencing of the PCR-amplified frag-
ments (in both directions) was performed by a Macrogen Europe sequencer (Amsterdam,
The Netherlands).

Special divergent and convergent primers were designed to verify the reliability of
RNA-seq data, and cDNA was synthesized with a High Capacity RNA-to-cDNA Kit
(Applied Biosystems, Waltham, MA, USA). qPCR was performed on an ABI 7500 Real-
time PCR Detection System (ABI, Los Angeles, CA, USA). The housekeeping genes B2M
and PPIA were used as an internal control. The data were analyzed using the 2−∆∆Ct

method and presented as relative expression levels from three biological replicates and
three parallel technical replicates. All detailed PCR conditions and primers sequences are
listed in Table S3.

3.12. CircRNA Functional Predictions

MiRNA binding sites were predicted in circRNA sequences using the web tool Cir-
cular RNA Interactome [42]. MiRNAs with a context score percentile more than 95 were
selected, and miRNA target genes were retrieved with TargetScan [43]. Genes with a
Cumulative.weighted.context score less than or equal to −1 were selected. Then, the results
from the mRNA expression analyses were used to construct the final circRNA–miRNA
gene networks. Only those networks that included genes that were differentially expressed
in any of the analyzed comparisons were considered. Finally, to assess which network
included circRNAs that possibly control the miRNA-targeted gene expression through
sponging the miRNAs, the log2 of fold change and FDR values of the expression contrasts
performed were taken into account. In that way, we classified networks as (a) “strongly
possible sponge” (Type = 2) (network including a circRNA very possibly acting as miRNA
sponge), when in any of the three comparisons performed, the log2 of fold change ob-
served in both the circRNA and mRNA analyses were greater than or equal to 1 in absolute
value, had the same sign in both contrasts and FDR values were less than or equal to 0.05;
(b) “possible sponge” (type = 1) (network including a circRNA possibly acting as miRNA
sponge) when in any of the three comparisons performed, the log2 of fold change observed
in both the circRNA and mRNA analyses were greater than or equal to 1 in absolute value
and had the same sign. (c) “no sponge” (type = 0) (network not including a circRNA acting
as miRNA sponge), for any other option.

4. Conclusions

In line with previous reports using only less mature fractions [15], these results show,
for the first time, the usefulness of the circRNAs to discriminate between three different
stages of thymocyte differentiation and provides new potential circRNA–miRNA–mRNA
networks capable of controlling the expression of genes involved in T-cell differentiation
in the thymus. These results lead us to believe that circRNAs could have, if appropriately
modified, a potential role to act as molecular or therapeutic tools to regulate cellular stability
through their interaction with miRNAs and other RNAs or RNA-binding proteins.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ncrna8020026/s1, Figure S1: Representative flow cytometry
analysis expression of CD4 and CD8 in human postnatal thymocytes. Figure S2: Validation of
circRNAs by qRT-PCR and Sanger sequencing; Table S1: Patient characteristics table; Table S2:
Pairwise comparisons between circRNAs of the three thymocyte populations; Table S3: Sequences of
the DNA primers used in this study; Table S4. Comparison between the fold change data between the
different populations (ST1-ST2/ST1-ST3/ST2-ST3) and qPCR data; Table S5. Differentially expressed
mRNAs among the three thymocyte populations; Table S6: Differential Expression for mRNA;
Table S7: circRNA–miRNA–mRNA networks.

https://www.mdpi.com/article/10.3390/ncrna8020026/s1
https://www.mdpi.com/article/10.3390/ncrna8020026/s1


Non-Coding RNA 2022, 8, 26 14 of 16

Author Contributions: P.L.-N. and P.F.-N. designed and performed the experiments, data analysis
and wrote the paper; M.Á.C.-F. performed the experiments; I.G.-V. performed the data analysis and
manuscript writing review; R.S.P. and Á.A. collected the samples; J.F.-P. designed the experiments
and prepared the first draft of the manuscript; J.S. performed the data analysis and prepared the first
draft of the manuscript; all the authors contributed to data interpretation and helped to revise the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financed by grants from the Spanish Ministry of Science, Innovation
and Universities (MCIU)(RTI2018- 093330-B-I00; MCIU/FEDER, EU), Ramón Areces Foundation
(CIVP19S7917); Autonomous Community of Madrid, Spain (B2017/BMD-3778; LINFOMAS-CM);
the Spanish Association Against Cancer (AECC, 2018; PROYE18054PIRI); and the Spanish Ministry
(Juan de la Cierva Grant IJCI-2016-29155). Institutional grants from the Fundación Ramón Areces
and Banco de Santander to the CBMSO are also acknowledged.

Institutional Review Board Statement: Institutional review board approval was obtained for these
studies (CEI 98-1825). The study was conducted in accordance with the Declaration of Helsinki.

Informed Consent Statement: The participants provided written informed consent.

Data Availability Statement: FASTQ data have been deposited in the NCBI Gene Expression Om-
nibus and are accessible through GEO accession number GSE178889.

Acknowledgments: The authors would like to thank the Cytometry and Cell Culture services of
the Severo Ochoa Molecular Biology Center (CBMSO) and Isabel Sastre for the technical support.
We thank all the patients and their legal representatives who were willing to donate their samples;
without their support, the research work would not be possible. We also would like to thank the
medical and nursing staff for patient care and assistance in data collection.

Conflicts of Interest: No conflict of interest to disclose. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

Abbreviations

circRNAs: circular RNAs; EcircRNAs: exonic circRNAs; EIciRNAs: exonic-intronic circRNAs;
ciRNAs: circular intronic RNAs; T-ALL: T-cell acute lymphoblastic leukaemia; ST1 (Stage1): early
immature CD34+CD2−; ST2 (Stage2): intermediate CD1A+ thymocytes; ST3 (Stage 3): mature
CD1A− thymocytes; PCA: principal component analysis; CLP: circular-to-linear expression propor-
tion; mRNA: messenger RNA; miRNA: MicroRNAs.

References
1. Zhang, X.-O.; Wang, H.-B.; Zhang, Y.; Lu, X.; Chen, L.-L.; Yang, L. Complementary sequence-mediated exon circularization. Cell

2014, 159, 134–147. [CrossRef] [PubMed]
2. Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate

transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [CrossRef] [PubMed]
3. Zhang, Y.; Zhang, X.-O.; Chen, T.; Xiang, J.-F.; Yin, Q.-F.; Xing, Y.-H.; Zhu, S.; Yang, L.; Chen, L.-L. Circular intronic long noncoding

RNAs. Mol. Cell 2013, 51, 792–806. [CrossRef] [PubMed]
4. Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characteriza-

tion of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [CrossRef] [PubMed]
5. Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as

efficient MicroRNA sponges. Nature 2013, 495, 384–388. [CrossRef]
6. Meng, X.; Li, X.; Zhang, P.; Wang, J.; Zhou, Y.; Chen, M. Circular RNA: An emerging key player in RNA world. Brief. Bioinform.

2017, 18, 547–557. [CrossRef] [PubMed]
7. Jeck, W.R.; Sharpless, N.E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [CrossRef]
8. Barrett, S.P.; Salzman, J. Circular RNAs: Analysis, expression and potential functions. Development 2016, 143, 1838–1847. [CrossRef]

[PubMed]
9. Szabo, L.; Salzman, J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nat. Rev. Genet. 2016, 17, 679–692.

[CrossRef]
10. Holdt, L.M.; Kohlmaier, A.; Teupser, D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell. Mol. Life Sci. 2018,

75, 1071–1098. [CrossRef]

http://doi.org/10.1016/j.cell.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25242744
http://doi.org/10.1038/nsmb.2959
http://www.ncbi.nlm.nih.gov/pubmed/25664725
http://doi.org/10.1016/j.molcel.2013.08.017
http://www.ncbi.nlm.nih.gov/pubmed/24035497
http://doi.org/10.1038/s41576-019-0158-7
http://www.ncbi.nlm.nih.gov/pubmed/31395983
http://doi.org/10.1038/nature11993
http://doi.org/10.1093/bib/bbw045
http://www.ncbi.nlm.nih.gov/pubmed/27255916
http://doi.org/10.1038/nbt.2890
http://doi.org/10.1242/dev.128074
http://www.ncbi.nlm.nih.gov/pubmed/27246710
http://doi.org/10.1038/nrg.2016.114
http://doi.org/10.1007/s00018-017-2688-5


Non-Coding RNA 2022, 8, 26 15 of 16

11. Patop, I.L.; Kadener, S. CircRNAs in cancer. Curr. Opin. Genet. Dev. 2018, 48, 121–127. [CrossRef] [PubMed]
12. Yu, C.-Y.; Kuo, H.-C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 29.

[CrossRef] [PubMed]
13. Nicolet, B.P.; Engels, S.; Aglialoro, F.; van den Akker, E.; von Lindern, M.; Wolkers, M.C. Circular RNA expression in human

hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 2018, 46, 8168–8180. [CrossRef] [PubMed]
14. Gaffo, E.; Boldrin, E.; Dal Molin, A.; Bresolin, S.; Bonizzato, A.; Trentin, L.; Frasson, C.; Debatin, K.-M.; Meyer, L.H.; Te Kronnie,

G.; et al. Circular RNA differential expression in blood cell populations and exploration of CircRNA deregulation in pediatric
acute lymphoblastic leukemia. Sci. Rep. 2019, 9, 14670. [CrossRef] [PubMed]

15. Buratin, A.; Paganin, M.; Gaffo, E.; Dal Molin, A.; Roels, J.; Germano, G.; Siddi, M.T.; Serafin, V.; De Decker, M.; Gachet, S.; et al.
Large-scale circular RNA deregulation in T-ALL: Unlocking unique ectopic expression of molecular subtypes. Blood Adv. 2020, 4,
5902–5914. [CrossRef] [PubMed]

16. Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-Type Specific Features of Circular RNA Expression. PLoS Genet
2013, 9, e1003777. [CrossRef]

17. Taghon, T.; Waegemans, E.; Van de Walle, I. Notch signaling during human T cell development. Notch Regul. Immune Syst. 2012,
360, 75–97. [CrossRef]

18. Dik, W.A.; Pike-Overzet, K.; Weerkamp, F.; de Ridder, D.; de Haas, E.F.E.; Baert, M.R.M.; van der Spek, P.; Koster, E.E.L.; Reinders,
M.J.T.; van Dongen, J.J.M.; et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement
studies and gene expression profiling. J. Exp. Med. 2005, 201, 1715–1723. [CrossRef] [PubMed]

19. Germain, R.N. T-cell development and the CD4–CD8 lineage decision. Nat. Rev. Immunol. 2002, 2, 309–322. [CrossRef]
20. Blom, B.; Spits, H. Development of human lymphoid cells. Annu. Rev. Immunol. 2006, 24, 287–320. [CrossRef]
21. Yui, M.A.; Rothenberg, E.V. Developmental gene networks: A triathlon on the course to T cell identity. Nat. Rev. Immunol. 2014,

14, 529–545. [CrossRef] [PubMed]
22. Rothenberg, E.V.; Ungerbäck, J.; Champhekar, A. Forging T-lymphocyte identity: Intersecting networks of transcriptional control.

Adv. Immunol. 2016, 129, 109–174. [CrossRef] [PubMed]
23. Wallaert, A.; Durinck, K.; Taghon, T.; Van Vlierberghe, P.; Speleman, F. T-all and thymocytes: A message of noncoding RNAs. J.

Hematol. Oncol. 2017, 10, 66. [CrossRef] [PubMed]
24. Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; et al. Circular RNA profiling reveals

an abundant CircHIPK3 that regulates cell growth by sponging multiple MiRNAs. Nat. Commun. 2016, 7, 11215. [CrossRef]
[PubMed]

25. Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA sequences to function. Nucleic Acids Res. 2019, 47,
D155–D162. [CrossRef]

26. Poggi, A.; Costa, P.; Morelli, L.; Cantoni, C.; Pella, N.; Spada, F.; Biassoni, R.; Nanni, L.; Revello, V.; Tomasello, E.; et al. Expression
of human NKRP1A by CD34+ immature thymocytes: NKRP1A-mediated regulation of proliferation and cytolytic activity. Eur. J.
Immunol. 1996, 26, 1266–1272. [CrossRef]

27. Le, J.; Park, J.E.; Ha, V.L.; Luong, A.; Branciamore, S.; Rodin, A.S.; Gogoshin, G.; Li, F.; Loh, Y.-H.E.; Camacho, V.; et al. Single-cell
RNA-seq mapping of human thymopoiesis reveals lineage specification trajectories and a commitment spectrum in T cell
development. Immunity 2020, 52, 1105–1118.e9. [CrossRef] [PubMed]

28. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [CrossRef]
[PubMed]

29. Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12,
357–360. [CrossRef] [PubMed]

30. Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of
a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [CrossRef] [PubMed]

31. Zhang, J.; Zhu, W.; Wang, Q.; Gu, J.; Huang, L.F.; Sun, X. Differential regulatory network-based quantification and prioritization
of key genes underlying cancer drug resistance based on time-course RNA-Seq data. PLoS Comput. Biol. 2019, 15, e1007435.
[CrossRef] [PubMed]

32. Riddle, M.R.; Damen, F.; Aspiras, A.; Tabin, J.A.; McGaugh, S.; Tabin, C.J. Evolution of gastrointestinal tract morphology and
plasticity in cave-adapted mexican tetra, astyanax mexicanus. bioRxiv 2020, 852814. [CrossRef]

33. Wang, Y.; Qin, T.; Hu, W.; Chen, B.; Dai, M.; Xu, G. Genome-wide methylation patterns in androgen-independent prostate cancer
cells: A comprehensive analysis combining MeDIP-bisulfite, RNA, and MicroRNA sequencing data. Genes 2018, 9, 32. [CrossRef]
[PubMed]

34. Chow, R.D.; Majety, M.; Chen, S. The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2.
Nat. Commun. 2021, 12, 4. [CrossRef] [PubMed]

35. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast
universal RNA-Seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef] [PubMed]

36. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef]

37. Jakobi, T.; Uvarovskii, A.; Dieterich, C. Circtools-a one-stop software solution for circular RNA research. Bioinformatics 2019, 35,
2326–2328. [CrossRef]

http://doi.org/10.1016/j.gde.2017.11.007
http://www.ncbi.nlm.nih.gov/pubmed/29245064
http://doi.org/10.1186/s12929-019-0523-z
http://www.ncbi.nlm.nih.gov/pubmed/31027496
http://doi.org/10.1093/nar/gky721
http://www.ncbi.nlm.nih.gov/pubmed/30124921
http://doi.org/10.1038/s41598-019-50864-z
http://www.ncbi.nlm.nih.gov/pubmed/31605010
http://doi.org/10.1182/bloodadvances.2020002337
http://www.ncbi.nlm.nih.gov/pubmed/33259601
http://doi.org/10.1371/annotation/f782282b-eefa-4c8d-985c-b1484e845855
http://doi.org/10.1007/82_2012_230
http://doi.org/10.1084/jem.20042524
http://www.ncbi.nlm.nih.gov/pubmed/15928199
http://doi.org/10.1038/nri798
http://doi.org/10.1146/annurev.immunol.24.021605.090612
http://doi.org/10.1038/nri3702
http://www.ncbi.nlm.nih.gov/pubmed/25060579
http://doi.org/10.1016/bs.ai.2015.09.002
http://www.ncbi.nlm.nih.gov/pubmed/26791859
http://doi.org/10.1186/s13045-017-0432-0
http://www.ncbi.nlm.nih.gov/pubmed/28270163
http://doi.org/10.1038/ncomms11215
http://www.ncbi.nlm.nih.gov/pubmed/27050392
http://doi.org/10.1093/nar/gky1141
http://doi.org/10.1002/eji.1830260613
http://doi.org/10.1016/j.immuni.2020.05.010
http://www.ncbi.nlm.nih.gov/pubmed/32553173
http://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
http://doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://doi.org/10.1038/nbt.3122
http://www.ncbi.nlm.nih.gov/pubmed/25690850
http://doi.org/10.1371/journal.pcbi.1007435
http://www.ncbi.nlm.nih.gov/pubmed/31682596
http://doi.org/10.1101/852814
http://doi.org/10.3390/genes9010032
http://www.ncbi.nlm.nih.gov/pubmed/29324665
http://doi.org/10.1038/s41467-020-20323-9
http://www.ncbi.nlm.nih.gov/pubmed/33397975
http://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1093/bioinformatics/bty948


Non-Coding RNA 2022, 8, 26 16 of 16

38. Cheng, J.; Metge, F.; Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics
2016, 32, 1094–1096. [CrossRef] [PubMed]

39. Meng, X.; Hu, D.; Zhang, P.; Chen, Q.; Chen, M. CircFunBase: A database for functional circular RNAs. Database 2019, 2019,
baz003. [CrossRef] [PubMed]

40. Wu, W.; Ji, P.; Zhao, F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate
transcriptomes. Genome Biol. 2020, 21, 101. [CrossRef]

41. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

42. Dudekula, D.B.; Panda, A.C.; Grammatikakis, I.; De, S.; Abdelmohsen, K.; Gorospe, M. CircInteractome: A web tool for exploring
circular RNAs and their interacting proteins and MicroRNAs. RNA Biol. 2016, 13, 34–42. [CrossRef] [PubMed]

43. McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of MicroRNA targeting
efficacy. Science 2019, 366, eaav1741. [CrossRef] [PubMed]

http://doi.org/10.1093/bioinformatics/btv656
http://www.ncbi.nlm.nih.gov/pubmed/26556385
http://doi.org/10.1093/database/baz003
http://www.ncbi.nlm.nih.gov/pubmed/30715276
http://doi.org/10.1186/s13059-020-02018-y
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1080/15476286.2015.1128065
http://www.ncbi.nlm.nih.gov/pubmed/26669964
http://doi.org/10.1126/science.aav1741
http://www.ncbi.nlm.nih.gov/pubmed/31806698

	Introduction 
	Results and Discussion 
	Isolation of Human Thymocytes at Different Stages during Their Intrathymic Differentiation 
	circRNAs Are Differentially Expressed during Thymocyte Differentiation 
	Circular-to-Linear Expression Proportion 
	Validation of Selected circRNAs 
	Patterns of Differentially Expressed circRNAs 
	mRNAs Differentially Expressed during Thymocyte Differentiation 
	In Silico Functional Outcome Prediction of Specific circRNAs Differential Expression 

	Materials and Methods 
	Patients’ Characteristics 
	Isolation of Human Thymocytes at Different Stages of Differentiation 
	RNA Isolation 
	Quality Control and Trimming 
	mRNA Pipeline 
	circRNA Pipeline 
	Quantification and Annotation of circRNAs 
	Pairwise Comparations of circRNA and mRNA Expression among the Three Thymocyte Populations 
	Functional Annotation of circRNAs 
	mRNA-circRNA-miRNA Interaction Network Analysis 
	Retrotranscription and Polymerase Chain Reactions 
	CircRNA Functional Predictions 

	Conclusions 
	References

