80 research outputs found
A 4,500âYearâLong Record of Southern Rocky Mountain Dust Deposition
Dust emissions from southwestern North America (Southwest) impact human health and water resources. Whereas a growing network of regional dust reconstructions characterizes the longâterm natural variability of dustiness in the Southwest, shortâterm fluctuations remain unexplored. We present a 4.5âmillennia nearâannual record of dust mass accumulation rates from the southern Rocky Mountains, CO. Using microscanning Xâray fluorescence and a geochemical endâmember mixing model, the record confirms dust increased with human disturbance beginning around 1880 CE, reversing a longâterm decreasing trend potentially related to changes in effective moisture, wind, and vegetation. However, increases in dust mass accumulation rates do not correspond to years or periods of drought, as characterized by tree rings. This result suggests sediment supply and transport mechanisms have a strong influence on dust deposition. The record shows the Southwest is naturally prone to dustiness; however, human disturbances have a large influence on dust emissions, which can be mitigated by changing land use.Plain Language SummaryWe use a sediment record to characterize the longâterm naturally driven changes in dust deposition over the past 4.5 millennia. The record shows a longâterm trend toward decreasing dust deposition, which was reversed with humanâinduced land disturbance beginning in the middle nineteenth century. The longâterm trend may be related to effective moisture, wind, and vegetation. Nonetheless, there appears to be little relationship between known drought events and increased dust deposition, suggesting the controls on dust deposition include factors such as sediment source and transport mechanisms acting independently of drought.Key PointsA new 4,500âyearâlong record of natural dust deposition shows a longâterm decreasing trendDrought variability, as characterized by tree rings, is not closely linked with dust mass accumulationHuman disturbance substantially increased dust deposition since 1880 CEPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151372/1/grl59278.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151372/2/grl59278_am.pd
Arctic system on trajectory to new state
The Arctic system is moving toward a new state that falls outside the envelope of glacial-interglacial fluctuations that prevailed during recent Earth history. This future Arctic is likely to have dramatically less permanent ice than exists at present. At the present rate of change, a summer ice-free Arctic Ocean within a century is a real possibility, a state not witnessed for at least a million years. The change appears to be driven largely by feedback-enhanced global climate warming, and there seem to be few, if any processes or feedbacks within the Arctic system that are capable of altering the trajectory toward this âsuper interglacialâ state
CO\u3csub\u3e2\u3c/sub\u3e and fire influence tropical ecosystem stability in response to climate change
Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28â15âkyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the âtippingâ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
Understanding uncertainties in future Colorado River streamflow
ArtĂculo -- Universidad de Costa Rica. Centro de Investigaciones GeofĂsicas, 2014The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamflow changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamflows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.Universidad de Costa Rica. Centro de Investigaciones GeofĂsicasLamont-Doherty Earth Observatory of Columbia UniversityUCR::VicerrectorĂa de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de Investigaciones GeofĂsicas (CIGEFI
The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland
The Kangerlussuaq area of southwest Greenland encompasses diverse ecological, geomorphic, and climate gradients that function over a range of spatial and temporal scales. Ecosystems range from the microbial communities on the ice sheet and moisture-stressed terrestrial vegetation (and their associated herbivores) to freshwater and oligosaline lakes. These ecosystems are linked by a dynamic glacio-fluvial-aeolian geomorphic system that transports water, geological material, organic carbon and nutrients from the glacier surface to adjacent terrestrial and aquatic systems. This paraglacial system is now subject to substantial change because of rapid regional warming since 2000. Here, we describe changes in the eco- and geomorphic systems at a range of timescales and explore rapid future change in the links that integrate these systems. We highlight the importance of cross-system subsidies at the landscape scale and, importantly, how these might change in the near future as the Arctic is expected to continue to warm
Recommended from our members
The twenty-first century Colorado River hot drought and implications for the future
Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. At least one-sixth to one-half (average at one-third) of this loss is due to unprecedented temperatures (0.9 degrees C above the 1906-1999 average), confirming model-based analysis that continued warming will likely further reduce flows. Whereas it is virtually certain that warming will continue with additional emissions of greenhouse gases to the atmosphere, there has been no observed trend toward greater precipitation in the Colorado Basin, nor are climate models in agreement that there should be a trend. Moreover, there is a significant risk of decadal and multidecadal drought in the coming century, indicating that any increase in mean precipitation will likely be offset during periods of prolonged drought. Recently published estimates of Colorado River flow sensitivity to temperature combined with a large number of recent climate model-based temperature projections indicate that continued business-as-usual warming will drive temperature-induced declines in river flow, conservatively -20% by midcentury and -35% by end-century, with support for losses exceeding -30% at midcentury and -55% at end-century. Precipitation increases may moderate these declines somewhat, but to date no such increases are evident and there is no model agreement on future precipitation changes. These results, combined with the increasing likelihood of prolonged drought in the river basin, suggest that future climate change impacts on the Colorado River flows will be much more serious than currently assumed, especially if substantial reductions in greenhouse gas emissions do not occur. Plain Language Summary Between 2000 and 2014, annual Colorado River flows averaged 19% below the 1906-1999 average, the worst 15-year drought on record. Approximately one-third of the flow loss is due to high temperatures now common in the basin, a result of human caused climate change. Previous comparable droughts were caused by a lack of precipitation, not high temperatures. As temperatures increase in the 21st century due to continued human emissions of greenhouse gasses, additional temperature-induced flow losses will occur. These losses may exceed 20% at mid-century and 35% at end-century. Additional precipitation may reduce these temperature-induced losses somewhat, but to date no precipitation increases have been noted and climate models do not agree that such increases will occur. These results suggest that future climate change impacts on the Colorado River will be greater than currently assumed. Reductions in greenhouse gas emissions will lead to lower future temperatures and hence less flow loss.Colorado Water Institute, National Science Foundation; NOAA Climate Assessment for the Southwest; U.S. Geological Survey Southwest Climate Science Center6 month embargo;First published: 24 March 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- âŠ