204 research outputs found

    Global thermal image of cylindrical 21700 Li-ion batteries with distributed optical fibre sensor

    Get PDF
    The ability to monitor the thermal behaviour of lithium-ion batteries (LIB) is an essential pre-requisite to optimise performance and ensure safe operation. However, traditional point measurement (thermocouples) faces challenges in accurately characterising LIB behaviour and notably in defining the hotspot and the magnitude and direction of the thermal gradient. To address these issues, an optical-frequency-domain-reflectometer (OFDR) based distributed-optical-fibre-sensor has been employed to quantify the heat generation within a cylindrical 21700 LIB. A 3 mm spatial resolution within the optical sensor is realised. The optical fibre has been wound around the cell surface for over 1300 unique measurement locations; distributed around the circumference and axially along the LIB. Distributed measurements show the maximum thermal difference can reach 8.37 °C during a 1.5C discharge, while the point-like sensors have 4.31 °C thermal difference. While a temperature gradient along the cell axial length is well understood, for the first time, this research quantifies the temperature variations along the circumference of the cell. The global thermal image highlights heat generation is accumulated around the positive current tab, implying that a fundamental knowledge of internal LIB structure is required when defining sensor placement within the traditional characterisation experiments and deployment within the battery management system (BMS)

    Estimating the global burden of endemic canine rabies

    Get PDF
    Background: Rabies is a notoriously underreported and neglected disease of lowincome countries. This study aims to estimate the public health and economic burden of rabies circulating in domestic dog populations, globally and on a country-by-country basis, allowing an objective assessment of how much this preventable disease costs endemic countries.<p></p> Methodology/Principal Findings: We established relationships between rabies mortality and rabies prevention and control measures, which we incorporated into a model framework. We used data derived from extensive literature searches and questionnaires on disease incidence, control interventions and preventative measures within this framework to estimate the disease burden. The burden of rabies impacts on public health sector budgets, local communities and livestock economies, with the highest risk of rabies in the poorest regions of the world. This study estimates that globally canine rabies causes approximately 59,000 (95% Confidence Intervals: 25- 159,000) human deaths, over 3.7 million (95% CIs: 1.6-10.4 million) disability-adjusted life years (DALYs) and 8.6 billion USD (95% CIs: 2.9-21.5 billion) economic losses annually. The largest component of the economic burden is due to premature death (55%), followed by direct costs of post-exposure prophylaxis (PEP, 20%) and lost income whilst seeking PEP (15.5%), with only limited costs to the veterinary sector due to dog vaccination (1.5%), and additional costs to communities from livestock losses (6%).<p></p> Conclusions/Significance: This study demonstrates that investment in dog vaccination, the single most effective way of reducing the disease burden, has been inadequate and that the availability and affordability of PEP needs improving. Collaborative investments by medical and veterinary sectors could dramatically reduce the current large, and unnecessary, burden of rabies on affected communities. Improved surveillance is needed to reduce uncertainty in burden estimates and to monitor the impacts of control efforts.<p></p&gt

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Distinguishing Lead and Molecule States in Graphene-Based Single-Electron Transistors

    Get PDF
    Graphene provides a two-dimensional platform for contacting individual molecules, which enables transport spectroscopy of molecular orbital, spin, and vibrational states. Here we report single-electron tunneling through a molecule that has been anchored to two graphene leads. Quantum interference within the graphene leads gives rise to an energy-dependent transmission and fluctuations in the sequential tunnel-rates. The lead states are electrostatically tuned by a global back-gate, resulting in a distinct pattern of varying intensity in the measured conductance maps. This pattern could potentially obscure transport features that are intrinsic to the molecule under investigation. Using ensemble averaged magneto-conductance measurements, lead and molecule states are disentangled, enabling spectroscopic investigation of the single molecule

    Gamma-Ray Bursts and Magnetars as Possible Sources of Ultra High Energy Cosmic Rays: Correlation of Cosmic Ray Event Positions with IRAS Galaxies

    Full text link
    We use the two-dimensional Kolmogorov-Smirnov (KS) test to study the correlation between the 60 cosmic ray events above 4x10^19 eV from the AGASA experiment and the positions of infrared luminous galaxies from the IRAS PSCz catalog. These galaxies are expected to be hosts to gamma ray bursts (GRB) and magnetars, both of which are associated with core collapse supernovae and have been proposed as possible acceleration sites for ultra high energy cosmic rays. We find consistency between the models and the AGASA events to have been drawn from the same underlying distribution of positions on the sky with KS probabilities ~50%. Application of the same test to the 11 highest AGASA events above 10^20 eV, however, yields a KS probability of < 0.5%, rejecting the models at >99.5% significance level. Taken at face value, these highest energy results suggest that the existing cosmic ray events above 10^20 eV do not owe their origin to long burst GRBs, rapidly rotating magnetars, or any other events associated with core collapse supernovae. The larger data set expected from the AUGER experiment will test whether this conclusion is real or is a statistical fluke that we estimate to be at the 2 sigma level.Comment: 15 pages, 4 figures. Final Version to be published in Phys. Rev.

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Using decision analysis to support proactive management of emerging infectious wildlife diseases

    Full text link
    Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye
    • 

    corecore