26 research outputs found

    Can we use meat inspection data for animal health and welfare surveillance?

    Get PDF
    Ante- and post-mortem inspections at abattoir were originally introduced to provide assurance that animal carcasses were fit for human consumption. However, findings at meat inspection can also represent a valuable source of information for animal health and welfare surveillance. Yet, before making secondary use of meat inspection data, it is important to assess that the same post-mortem findings get registered in a consistent way among official meat inspectors across abattoirs, so that the results are as much independent as possible from the abattoir where the inspection is performed. The most frequent findings at official meat inspections of pigs and beef cattle in Sweden were evaluated by means of variance partitioning to quantify the amount of variation in the probabilities of these findings due to abattoir and farm levels. Seven years of data (2012-2018) from 19 abattoirs were included in the study. The results showed that there was a very low variation between abattoirs for presence of liver parasites and abscesses, moderately low variation for pneumonia and greatest variation for injuries and nonspecific findings (e.g., other lesions). This general pattern of variation was similar for both species and implies that some post-mortem findings are consistently detected and so are a valuable source of epidemiological information for surveillance purposes. However, for those findings associated with higher variation, calibration and training activities of meat inspection staff are necessary to enable correct conclusions about the occurrence of pathological findings and for producers to experience an equivalent likelihood of deduction in payment (independent of abattoir)

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Correction: Volume12, Issue1 Article Number7354 DOI10.1038/s41467-021-27675-w PublishedDEC 16 2021Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors. Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. Here, the authors conduct a GWAS and suggest protective effect of higher TSH on risk of thyroid cancer and goitre.Peer reviewe

    Author Correction:GWAS of thyroid stimulating hormone highlights the pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    The original version of this article contained an error in the results, in the second paragraph of the subsection entitled “Fine-mapping for potentially causal variants among TSH loci”, in which effect sizes for two variants were incorrectly reported

    Processed pseudogenes acquired somatically during cancer development

    Get PDF
    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5′ truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context

    GWAS of thyroid stimulating hormone highlights pleiotropic effects and inverse association with thyroid cancer

    Get PDF
    Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors

    Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.

    Get PDF
    We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    EUCAST rapid antimicrobial susceptibility testing (RAST) in blood cultures: validation in 55 European laboratories

    Get PDF
    Objectives: When bloodstream infections are caused by resistant bacteria, rapid antimicrobial susceptibility testing (RAST) is important for adjustment of therapy. The EUCAST RAST method, directly from positive blood cultures, was validated in a multi-laboratory study in Europe. Methods: RAST was performed in 40 laboratories in northern Europe (NE) and 15 in southern Europe (SE) from clinical blood cultures positive for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus or Streptococcus pneumoniae. Categorical results at 4, 6 and 8 h of incubation were compared with results for EUCAST standard 16-20 h disc diffusion. The method, preliminary breakpoints and the performance of the laboratories were evaluated. Results: The total number of isolates was 833/318 in NE/SE. The number of zone diameters that could be read (88%, 96% and 99%) and interpreted (70%, 81% and 85%) increased with incubation time (4, 6 and 8 h). The categorical agreement was acceptable, with total error rates in NE/SE of 2.4%/4.9% at 4 h, 1.1%/3.5% at 6 h and 1.1%/3.3% at 8 h. False susceptibility at 4, 6 and 8 h of incubation was below 0.3% and 1.1% in NE and SE, respectively, and the corresponding percentages for false resistance were below 1.9% and 2.8%. After fine-tuning breakpoints, more zones could be interpreted (73%, 89% and 93%), with only marginally affected error rates. Conclusions: The EUCAST RAST method can be implemented in routine laboratories without major investments. It provides reliable antimicrobial susceptibility testing results for relevant bloodstream infection pathogens after 4-6 h of incubation. © The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.This work was supported by the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) through its regular support of the development of EUCAST methodology and by the Medical Research Council of Southeast Sweden (grant number FORSS-744451).publishedVersio
    corecore