179 research outputs found

    Potential of the Osteoclast’s Proton Pump as a Drug Target in Osteoporosis

    Get PDF
    Decreasing bone mass during aging predisposes to fractures and it is estimated that every second woman and one in five men will suffer osteoporotic fractures during their lifetime. Bone is an adaptive tissue undergoing continuous remodeling in response to physical and metabolic stimuli. Bone mass decreases through a net negative balance in the bone remodeling process of bone, in which the new bone incompletely replaces the resorbed bone mass. Bone resorption is carried out by the osteoclasts; the bone mineral is solubilized by acidification and the organic matrix is subsequently degraded by proteases. Several classes of drugs are available for prevention of osteoporotic fractures. They act by different mechanisms to increase bone mass, and some of them act mainly as antiresorptives by inhibition of osteoclast formation or their function. Optimally, a drug should act selectively on a specific process, since other processes affected usually result in adverse effects. The purpose of this study was to evaluate whether the osteoclastic vacuolar adenosine trisphosphatases (V-ATPase), which drives the solubilization of bone mineral, can be selectively inhibited despite its ubiquitous cellular functions. The V-ATPase is a multimeric protein composed of 13 subunits of which six possesses two or more isoforms. Selectivity for the osteoclastic V-ATPase could be provided if it has some structural uniqueness, such as a unique isoform combination. The a3 isoform of the 116kDa subunit is inevitable for bone resorption; however, it is also present in, and mainly limited to, the lysosomes of other cells. No evidence of a structural uniqueness of the osteoclastic V-ATPase compared to the lysosomal V-ATPase was found, although this can not yet be excluded. Thus, an inhibitor selective for the a3 isoform would target the lysosomal V-ATPase as well. However, the results suggest that selectivity for bone resorption over lysosomal function can be obtained by two other mechanisms, suggesting that isoform a3 is a valid target. The first is differential compensation; bone resorption depends on the high level of a3 expression, and is not compensated for by other isoforms, while the lower level of a3 in lysosomes of other cells may be partly compensated for. The second mechanism is because the bone resorption process itself is fundamentally different from lysosomal acidification because of the chemistry of bone dissolution and the anatomy of the resorbing osteoclast. By this mechanism, full inhibition of bone resorption is obtained with more than tenfold lower inhibitor concentration than those needed to fully inhibit lysosomal acidification. The two mechanisms are additive. Based on the results, we suggest that bone resorption can be selectively inhibited if VATPase inhibitors that are sufficiently selective for the a3 isoform over the other isoforms are developed.Siirretty Doriast

    Static and lattice vibrational energy differences between polymorphs

    No full text
    A computational study of 1061 experimentally determined crystal structures of 508 polymorphic organic molecules has been performed with state-of-the-art lattice energy minimisation methods, using a hybrid method that combines density functional theory intramolecular energies with an anisotropic atom–atom intermolecular model. Rigid molecule lattice dynamical calculations have also been performed to estimate the vibrational contributions to lattice free energies. Distributions of the differences in lattice energy, free energy, zero point energy, entropy and heat capacity between polymorphs are presented. Polymorphic lattice energy differences are typically very small: over half of polymorph pairs are separated by less than 2 kJ mol?1 and lattice energy differences exceed 7.2 kJ mol?1 in only 5% of cases. Unsurprisingly, vibrational contributions to polymorph free energy differences at ambient conditions are dominated by entropy differences. The distribution of vibrational energy differences is narrower than lattice energy differences, rarely exceeding 2 kJ mol?1. However, these relatively small vibrational free energy contributions are large enough to cause a re-ranking of polymorph stability below, or at, room temperature in 9% of the polymorph pair

    Accurate force fields and methods for modelling organic molecular crystals at finite temperatures

    No full text
    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy

    Improved estimation of glomerular filtration rate (GFR) by comparison of eGFRcystatin C and eGFRcreatinine

    Get PDF
    Objective. GFR-prediction equations based upon cystatin C and creatinine have better diagnostic performance in estimating GFR than equations based upon only one of the two markers. The present work concerns in what way a comparison between separate estimations of GFR based upon cystatin C (eGFR(cystatin C)) or creatinine (eGFR(creatinine)) can be used to evaluate the diagnostic performance of a combined cystatin C-and creatinine-based estimation of GFR. Methods. The difference between eGFR(cystatin C) and eGFR(creatinine) was compared with measured GFR (iohexol clearance) and a combined cystatin C- and creatinine-based estimation of GFR in a Swedish-Caucasian cohort of 857 adult patients. Results. A difference between eGFR(cystatin C) and eGFR(creatinine) of >= 40% indicated a markedly reduced diagnostic performance of the combined cystatin C- and creatinine-based estimation of GFR. Conclusion. Comparison of the agreement between eGFR(cystatin C) and eGFR(creatinine) can be used to evaluate the diagnostic performance of combined cystatin C-and creatinine-based estimations of GFR. If 'threshold values' for discordance are exceeded, it must be considered whether the clinical context requires the use of an invasive gold standard method to measure GFR. In some clinical contexts either creatinine or cystatin C are known to be invalidated as markers of GFR and in these situations the use of only the cystatin C-or the creatinine-based GFR estimate should be considered when the 'threshold values' are exceeded

    Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: How to measure glomerular filtration rate with iohexol?

    Get PDF
    Published version. Source at http://dx.doi.org/10.1093/ckj/sfw070 While there is general agreement on the necessity tomeasure glomerular filtration rate (GFR) inmany clinical situations, there is less agreement on the bestmethod to achieve this purpose.As the gold standardmethod for GFR determination, urinary (or renal) clearance of inulin, fades into the background due to inconvenience and high cost, a diversity of filtrationmarkers and protocols compete to replace it. In this review, we suggest that iohexol, a non-ionic contrast agent, is most suited to replace inulin as the marker of choice for GFR determination. Iohexol comes very close to fulfilling all requirements for an ideal GFRmarker in terms of low extra-renal excretion, low protein binding and in being neither secreted nor reabsorbed by the kidney. In addition, iohexol is virtually non-toxic and carries a low cost. As iohexol is stable in plasma, administration and sample analysis can be separated in both space and time, allowing access to GFR determination across different settings. An external proficiency programme operated by Equalis AB, Sweden, exists for iohexol, facilitating interlaboratory comparison of results. Plasma clearance measurement is the protocol of choice as it combines a reliable GFR determination with convenience for the patient. Single-sample protocols dominate, butmultiple-sample protocolsmay bemore accurate in specific situations. In lowGFRs one ormore late samples should be included to improve accuracy. In patients with large oedema or ascites, urinary clearance protocols should be employed. In conclusion, plasma clearance of iohexol may well be the best candidate for a common GFR determination method

    A Prolific Solvate Former, Galunisertib, under the Pressure of Crystal Structure Prediction, Produces Ten Diverse Polymorphs

    Get PDF
    The solid form screening of galunisertib produced many solvates, prompting an extensive investigation into possible risks to the development of the favored monohydrate form. Inspired by crystal structure prediction, the search for neat polymorphs was expanded to an unusual range of experiments, including melt crystallization under pressure, to work around solvate formation and the thermal instability of the molecule. Ten polymorphs of galunisertib were found; however, the structure predicted to be the most stable has yet to be obtained. We present the crystal structures of all ten unsolvated polymorphs of galunisertib, showing how state-of-the-art characterization methods can be combined with emerging computational modeling techniques to produce a complete structure landscape and assess the risk of late-appearing, more stable polymorphs. The exceptional conformational polymorphism of this prolific solvate former invites further development of methods, computational and experimental, that are applicable to larger, flexible molecules with complex solid form landscapes

    Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation

    Get PDF
    Abstract Background. The plasma level of cystatin C is a better marker than plasma creatinine for successful aging. It has been assumed that the advantage of cystatin C is not only due to it being a better marker for glomerular filtration rate (GFR) than creatinine, but also because an inflammatory state of a patient induces a raised cystatin C level. However, the observations of an association between cystatin C level and inflammation stem from large cohort studies. The present work concerns the cystatin C levels and degree of inflammation in longitudinal studies of individual subjects without inflammation, who undergo elective surgery. Methods. Cystatin C, creatinine, and the inflammatory markers CRP, serum amyloid A (SAA), haptoglobin and orosomucoid were measured in plasma samples from 35 patients the day before elective surgery and subsequently during seven consecutive days. Results. Twenty patients had CRP-levels below 1 mg/L before surgery and low levels of the additional inflammatory markers. Surgery caused marked inflammation with high peak values of CRP and SAA on the second day after the operation. The cystatin C level did not change significantly during the observation period and did not correlate significantly with the level of any of the four inflammatory markers. The creatinine level was significantly reduced on the first postoperative day but reached the preoperative level towards the end of the observation period. Conclusion. The inflammatory status of a patient does not influence the role of cystatin C as a marker of successful aging, nor of GFR

    DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development.

    Get PDF
    BACKGROUND AND AIMS: Atherogenesis involves a complex interaction between immune cells and lipids, processes greatly influenced by the vascular smooth muscle cell (VSMC) phenotype. The DNA glycosylase NEIL3 has previously been shown to have a role in atherogenesis, though whether this is due to its ability to repair DNA damage or to other non-canonical functions is not yet clear. Hereby, we investigate the role of NEIL3 in atherogenesis, specifically in VSMC phenotypic modulation, which is critical in plaque formation and stability. METHODS: Chow diet-fed atherosclerosis-prone Apoe-/- mice deficient in Neil3, and NEIL3-abrogated human primary aortic VSMCs were characterized by qPCR, and immunohistochemical and enzymatic-based assays; moreover, single-cell RNA sequencing, mRNA sequencing, and proteomics were used to map the molecular effects of Neil3/NEIL3 deficiency in the aortic VSMC phenotype. Furthermore, BrdU-based proliferation assays and Western blot were performed to elucidate the involvement of the Akt signaling pathway in the transdifferentiation of aortic VSMCs lacking Neil3/NEIL3. RESULTS: We show that Neil3 deficiency increases atherosclerotic plaque development without affecting systemic lipids. This observation was associated with a shift in VSMC phenotype towards a proliferating, lipid-accumulating and secretory macrophage-like cell phenotype, without changes in DNA damage. VSMC transdifferentiation in Neil3-deficient mice encompassed increased activity of the Akt signaling pathway, supported by cell experiments showing Akt-dependent proliferation in NEIL3-abrogated human primary aortic VSMCs. CONCLUSIONS: Our findings show that Neil3 deficiency promotes atherosclerosis development through non-canonical mechanisms affecting VSMC phenotype involving activation of the Akt signaling pathway

    The complexity of kidney disease and diagnosing it – cystatin C, selective glomerular hypofiltration syndromes and proteome regulation

    Get PDF
    Estimation of kidney function is often part of daily clinical practice, mostly done by using the endogenous glomerular filtration rate (GFR)-markers creatinine or cystatin C. A recommendation to use both markers in parallel in 2010 has resulted in new knowledge concerning the pathophysiology of kidney disorders by the identification of a new set of kidney disorders, selective glomerular hypofiltration syndromes. These syndromes, connected to strong increases in mortality and morbidity, are characterized by a selective reduction in the glomerular filtration of 5–30 kDa molecules, such as cystatin C, compared to the filtration of small molecules <1 kDa dominating the glomerular filtrate, for example water, urea and creatinine. At least two types of such disorders, shrunken or elongated pore syndrome, are possible according to the pore model for glomerular filtration. Selective glomerular hypofiltration syndromes are prevalent in investigated populations, and patients with these syndromes often display normal measured GFR or creatinine-based GFR-estimates. The syndromes are characterized by proteomic changes promoting the development of atherosclerosis, indicating antibodies and specific receptor-blocking substances as possible new treatment modalities. Presently, the KDIGO guidelines for diagnosing kidney disorders do not recommend cystatin C as a general marker of kidney function and will therefore not allow the identification of a considerable number of patients with selective glomerular hypofiltration syndromes. Furthermore, as cystatin C is uninfluenced by muscle mass, diet or variations in tubular secretion and cystatin C-based GFR-estimation equations do not require controversial race or sex terms, it is obvious that cystatin C should be a part of future KDIGO guidelines.publishedVersio
    corecore