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ABSTRACT: The solid form screening of galunisertib
produced many solvates, prompting an extensive investigation
into possible risks to the development of the favored
monohydrate form. Inspired by crystal structure prediction,
the search for neat polymorphs was expanded to an unusual
range of experiments, including melt crystallization under
pressure, to work around solvate formation and the thermal
instability of the molecule. Ten polymorphs of galunisertib
were found; however, the structure predicted to be the most
stable has yet to be obtained. We present the crystal structures
of all ten unsolvated polymorphs of galunisertib, showing how
state-of-the-art characterization methods can be combined
with emerging computational modeling techniques to produce a complete structure landscape and assess the risk of late-
appearing, more stable polymorphs. The exceptional conformational polymorphism of this prolific solvate former invites further
development of methods, computational and experimental, that are applicable to larger, flexible molecules with complex solid
form landscapes.

■ INTRODUCTION

Crystalline drugs are almost exclusively delivered to patients as
either neat (nonsolvated) forms or, alternatively, as hydrates.1

Which crystal form is ultimately developed into a drug product
depends on how much is known about how the drug
crystallizes and the properties of its neat and hydrated
forms.2−5 Experimental solid form screening, generally the
first step taken to transform a molecule to a medicine, aims to
identify as many solid forms as possible with the hope that one
will be commercially viable, as well as to avoid the potentially
catastrophic consequences of late-appearing forms.6−9 Identi-
fying important polymorphs and developing crystallization
processes that target them can be especially complicated,
however, for molecules which show a high propensity to form
solvates.10 Some neat forms will be missed altogether because
they do not nucleate and grow from solvate-forming solvents,
while the appearance of others may rely exclusively on
crystallizing a solvated precursor. In fact, it is not uncommon
for a desolvate to be kinetically trapped upon removal of the
product solvate from the crystallizing solution or during drying.
The appearance of solvates during solid form screening will

usually alter the strategy taken to find other crystal forms,
expanding the search in some areas and potentially contracting

it in others. Desolvation and solvent exchange, for example, are
experimental approaches that cannot be anticipated in the
initial design of experiments but which will need to be
exploited to respectively target neat and hydrated crystal forms
originating from solvates discovered during the screen. This
strategy has proven successful in generating many new forms11

and may be the only path to a suitable crystalline form. The
appearance of a solvate may also prompt screening efforts to be
redirected away from that solvent, effectively limiting the
search space.12 However, for prolific solvate-forming com-
pounds, solvents cannot simply be avoided for having formed a
solvate; other approaches must be considered to ensure that
the search for solid forms is comprehensive and rigorous.
Among these, high temperatures are commonly used to
increase the probability of crystallizing nonsolvated forms from
solvate-forming solvents. It has been proposed for some
systems that conformational energy barriers preventing
nucleation of stable forms may be more easily overcome at
elevated temperatures.13 Unfortunately, important forms are
not always attainable at high temperatures, and many
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compounds are not sufficiently stable for this approach to be
feasible.
Given the limitations on experimental screening imposed by

solvate formation, having the ability to calculate how a prolific
solvate-forming molecule might crystallize on its own would be
especially useful for assessing the risk of polymorphism. In
recent years, computational crystal structure prediction (CSP)
has been explored as a complement to experimental solid form
screening, helping to structurally characterize observed solid
forms,14,15 to understand crystallization behaviors at a
molecular level, and to decide when it might be safe to stop
screening.16−18 CSP has previously been performed on drug
molecules known to form many solvates, such as olanzapine19

and axitinib,20 where it proved to be of great utility in
explaining experimental observations.
In this work, we explore the solid form landscape of a prolific

solvate former, galunisertib (GAL, 4-[2-(6-methylpyridin-2-
yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl]quinoline-6-car-
boxamide, Figure 1). GAL, a small-molecule inhibitor of

transforming growth factor beta (TGF-β) receptor I that
specifically downregulates pSMAD2, was recently investigated
for use in the oral treatment of advanced metastatic
malignancies, including glioblastoma, pancreatic cancer, and
hepatocellular carcinoma.21 Solid form screening quickly
revealed a particularly strong tendency of the TGF-β inhibitor
to form solvates with a wide range of solvents. Neat crystal
forms were initially found by desolvation, however, conditions
were later identified to crystallize many of the nonsolvated
polymorphs directly from solution. As shown in this paper,
GAL was eventually crystallized in more than 50 solvates, one
of which was a monohydrate, and 10 neat polymorphs. The
monohydrate was chosen for commercial development, based
on its ease of crystallization, apparent thermodynamic stability,
and solid-state properties.
Having encountered many roadblocks with prolific solvate

formation and chemical instability at higher temperatures in
the attempts to experimentally find its neat forms, GAL was an
ideal candidate to explore the use of CSP as a complement to
solid form screening. Could CSP be successful in suggesting
structures of observed forms for which single crystals suitable
for X-ray diffraction could not be obtained? Could computa-
tional modeling and solid form informatics aid in under-
standing the properties of the solid forms? Could such
methods help to rationalize desolvation pathways from solvates
to neat polymorphs? Are structures of greater stability
predicted, and if so, what assurance is there that no such
polymorph exists? In this paper, we describe the herculean
efforts to isolate and characterize the many neat forms of
galunisertib over the course of more than 10 years. The
comprehensive determination of ten polymorph crystal

structures required going beyond conventional single-crystal
X-ray diffraction to leverage both state-of-the-art powder
characterization of carefully prepared polycrystalline solids and
computational chemistry, including CSP. The CSP study also
suggested that specialist experiments at higher pressures should
be performed. In setting a new standard for interdisciplinary
solid form screening and characterization that can be applied
to all organic materials, we have uncovered in GAL a truly
remarkable system of conformational polymorphs.

■ RESULTS
Experimental Solid-Form Landscape. GAL was recrys-

tallized in search of neat polymorphs and solvates using
industry standard solvent-based techniques,22 and following
the discovery of numerous solvates, by thermal and relative
humidity (RH) annealing to promote desolvation and/or
solvent exchange. The conventional solid form screen used the
crystalline monohydrate as the starting material and
encompassed more than 800 experiments. In this phase of
the solid form screen, nine neat polymorphs (I−IX), along
with more than 50 solvates with diverse solvents, were found.
Many solvated forms were crystallized from solution as the
stable form, while others crystallized as kinetic forms. With
such a large number of solvates having readily appeared in the
solid form screen, including solvate polymorphs and solvates of
different stoichiometry, the experimental effort was ultimately
directed to confirming the identity of the forms that were
found, characterizing their solid form properties and establish-
ing their transformation (desolvation) pathways. Thus, the
solid form screen, while extensive, was known to be far from
all-encompassing, with the most obvious deficiency being an
inability to recrystallize at high temperatures, owing to the
chemical instability of the drug substance. Details of the
experimental screen are provided in the Supporting Informa-
tion (SI).
The thermodynamically most stable form of GAL at ambient

temperature over a wide RH range is the monohydrate. This
form preferentially crystallizes in the presence of even small
amounts of water. The monohydrate is, however, susceptible to
dehydration at higher temperatures, with conversion to
different neat polymorphs depending on the drying conditions
(SI Section 1.3). At low relative humidity (<5% RH) and with
modest increases in temperature (up to 50 °C), an isomorphic
dehydrate, form I, is obtained. This neat polymorph is highly
unstable, rapidly reverting to the monohydrate above 5% RH
at ambient temperature. Drying the monohydrate at higher
temperatures (60 °C and above) sees a change in dehydration
pathway, kinetically trapping GAL in forms III, IV, and VI,
usually as phase mixtures.
Forms IV and VI, the most stable of the neat polymorphs,

were crystallized directly, and frequently concomitantly, from a
variety of solvents. Desolvation also afforded a viable route to
these polymorphic forms, as virtually every solvate could be
desolvated under aggressive drying conditions to one or both
of these forms (SI Section 1.3). By contrast, forms II, III, V,
VII, and VIII were produced by drying specific solvates and
only under comparatively mild conditions. While form II was
obtained from a tetrahydrofuran solvate, one of a large family
of isostructural solvates, forms III and V were only obtained
with mild drying of ethanol and methanol solvates,
respectively. Likewise, forms VII and VIII were produced by
desolvating acetonitrile and acetone solvates, again under mild
conditions. Form IX is a highly elusive polymorph, crystallized

Figure 1. Molecular structure of galunisertib. The hydrogen-bonding
acceptors are numbered, and the hydrogens shown are the hydrogen-
bond donors.
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from solution in only milligram quantities on the few occasions
it was observed. That form IX was only ever observed in phase-
pure form suggests this metastable form may be a casualty of
Ostwald’s rule of stages, rapidly disappearing with the
nucleation of other more stable forms, usually forms IV and VI.
The search for neat GAL polymorphs was expanded when a

first CSP study predicted as the global minimum (GM) a
substantially more stable, high density structure than forms I−
IX (SI Figure S25). This suggested crystallizing GAL under
pressure on the basis that higher density forms have been
found at elevated pressures (cf. dalcetrapib23 and γ-amino-
butyric acid24).25,26 By specifically introducing pressure as an
experimental variable, the search for neat polymorphs at higher
temperatures was also reconsidered, with past experience
having shown that thermal decomposition of molecular
compounds can often be inhibited at elevated pressures.27

No new phases were obtained from numerous attempts to
grow GAL crystals from solution at elevated pressures
(1−6 GPa) (SI Section 1.4); however, a new polymorph
(form X) was crystallized by slowly cooling a melt (in the
absence of any pressure-transmitting medium or solvent) from
240 °C to ambient temperature under modest pressure (0.4
GPa) in a diamond anvil cell (SI Figure S5). Success in
crystallizing form X likely hinged on using form V, one of the
lowest melting GAL polymorphs, to generate the melt at the
lowest possible temperature so as to minimize chemical
decomposition. On decompression to ambient pressure, the
crystal of form X survived and so it was possible to obtain
SCRXD data at ambient pressure. It is worth noting that form
X was not the GM structure. In fact, it was not even a high
density form.
Figure 2 shows the powder X-ray diffraction (PXRD)

patterns of the neat GAL polymorphs, as well as the
monohydrate. All of the crystal forms, except the isostructural
monohydrate and form I, give characteristic PXRD patterns,
and these two exceptions are readily distinguished by their
solid-state NMR (ssNMR) spectra (SI Section 2.3). Powder X-
ray diffraction was used to identify crystal forms generated
throughout the solid form screen, and eventually, we were able
to establish (to within the detection limit of PXRD) that most
of the neat polymorphs had been generated in phase-pure form
by comparison with the simulated powder patterns. The
experimental solid form landscape, showing the confirmed neat
and hydrated forms, routes to their production and selected
interconversion pathways, is compiled in Figure 3.
Crystal Structure Prediction. A Z′ = 1 crystal energy

landscape (CSP1) was commissioned for GAL to complement
the experimental solid form screen at the point when only
forms I−VI had been detected. The CrystalPredictor and
CrystalOptimizer28 programs were used in CSP1 to survey
crystal packing possibilities in 59 space groups for a range of
GAL conformations, defined primarily by the three internal
(amide−quinoline, quinolone−pyrazole, and pyrazole−pyri-
dine) torsion angles (SI Section 3.1).29 Puckering of the 5-
membered dihydropyrrole ring was not included as a search
variable in the CSP1 study; only later was this seemingly small
molecular change found to have a surprisingly large effect on
the calculated lattice energy of some crystal structures.
Plausible structure candidates were found for forms II, III, V,

and VI, and later forms VIII−X, in the CSP1 crystal energy
landscape (SI Figure S25) by comparison of PXRD patterns,
albeit some structures had the 5-membered ring as planar or in
the opposite orientation. Highly metastable form I was not

among the low energy CSP1 structures, and being Z′ = 2
polymorphs, forms IV and VII were out of the scope of this
search. In retrospect, it should not have been surprising that
the structures corresponding to the desolvate forms II, III, and
V were comparatively high in energy. The other experimentally
observed polymorphs (VI, VIII, and X) were also not among
the lowest energy structures on the CSP1 landscape, where
instead a substantially more stable, high density crystal packing
arrangement (GM) was seen as the global lattice energy
minimum. When GAL forms I−VI were shown by several
commonly used DFT+D energy methods (Figure 6) to be
appreciably less stable (higher lattice energy) than the GM
structure, the pressure was on, literally and figuratively, to
produce this structure in the laboratory.
A second CSP study (CSP2) was commissioned following

the discovery of forms VII−IX and subsequent determination
by ssNMR spectroscopy that form VII is a Z′ = 2 polymorph
(SI Figure S14). The CSP2 study used GRACE30 to sample
GAL crystal packing in space groups with Z′ = 1 or Z′ = 2 that
account for 99.9% of the observed distribution in the
Cambridge Structural Database (SI Section 3.2).31 The parallel
tempering approach implemented in GRACE does not place
any restrictions on the molecular conformation when

Figure 2. Powder X-ray diffractograms (λ = 1.5406 Å, y axis =
intensity in arbitrary units) of galunisertib monohydrate and forms I−
X. The form X powder pattern was simulated from SCXRD data. All
patterns represent pure phases, except for forms VII and VIII, which
are contaminated with form IV.
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generating trial crystal structures, which meant that both
dihydropyrrole ring orientations were sampled in the CSP2
search. The CSP2 Z′ = 1 and Z′ = 2 crystal energy landscape
calculated using the Perdew−Burke−Ernzerhof (PBE) func-
tional and an empirical pairwise atom−atom dispersion model
(NP)32 is shown in Figure 4.

The inclusion of Z′ = 2 structures in the search dramatically
increased the number of lattice energy minima found on the
crystal energy landscape of GAL. All of the neat polymorphs,
except form I, were found within 10 kJ mol−1 of the same
global minimum structure as found in CSP1. However, the
PBE+NP energy model used in CSP2 ranked both Z′ = 2
polymorphs (IV and VII) and form IX (in the correct

hydropyrrole ring puckering) closer in energy, and within the
estimated margin of error, to the GM and a few low energy Z′
= 2 structures.

Crystal Structure Analysis of Neat Polymorphs.
Solving the crystal structures of all ten GAL polymorphs was
an enormous task, not only requiring a concerted effort to
grow single crystals or generate highly crystalline, phase pure
polycrystalline samples of each of the forms, but also leveraging
every experimental tool and computational method at our
disposal. The crystal structures of forms II, III, IV, VI, and X
were solved from SCXRD data using single crystals grown by a
variety of methods. Whereas single crystals of forms IV and VI
were grown directly from solution, form X grew from the melt
as a large single crystal inside a diamond anvil cell, permitting
the structure to be solved at pressure. Having survived
decompression, the form X structure could also be solved
from full sets of diffraction data collected at ambient pressure.
Translucent single crystals of forms II and III suitable for
SCXRD were, respectively, produced upon air drying toluene
and ethanol solvate crystals. CSP, in finding excellent matches
(RMSD20 < 0.3 Å) to the form II, III, IV, VI, and X SCXRD
structures on the computed crystal energy landscape(s),
confirmed that these structures are lattice energy minima.
PXRD was used to solve the crystal structures of the

remaining GAL polymorphs for which single crystals could not
be grown. For forms I, V, and IX, the crystal structures were
solved from transmission PXRD patterns collected for phase-
pure samples (Figure 2, SI Section 2.2). However, with neither
form VII nor VIII having been produced as a pure phase, the
PXRD patterns of these polymorphs could not be indexed, let
alone used to solve their structures without the help of CSP.
For these polymorphs, a powder pattern matching algorithm33

in GRACE was used to identify one distinct match to the form
VII PXRD pattern and several pseudosymmetric matches to
the form VIII PXRD pattern (SI Figure S28). The form VII
structure model derived by CSP2 helped to identify form IV as
the main phase impurity in the form VII material, allowing the
structure of form VII to be confirmed through mixed-phase

Figure 3. Experimental solid form landscape of galunisertib, summarizing the forms discovered during solid form screening and best routes to their
production and interconversion pathways. Solid boxes show forms which were crystallized from solution; dotted boxes show forms obtained by
desolvation; the dash-dotted box is the form grown from the melt at modest pressure. MH is the monohydrate, Ssolvent is a solvate.

Figure 4. Crystal energy landscape of galunisertib calculated using
GRACE. Unobserved crystal packings are shown in gray for Z′ = 1
(●) and Z′ = 2 (○) structures. Experimentally observed neat
polymorphs (II−X) and the global minimum (GM) structure are
highlighted with symbols, colored by their calculated molecular strain
energy and in shapes that represent the nearest conformational energy
minimum.
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Rietveld refinement (SI Figure S11). The best candidate for
form VIII was ultimately identified by combining Pawley-type
refinement of the unit cell parameters of the calculated
structures against the best available RT PXRD pattern (SI
Figure S12), with a comparison of the calculated ssNMR
spectrum of each candidate to the experimental ssNMR
spectrum of form VIII (SI Figure S29). This structure
candidate was used as the starting model for a Rietveld
refinement to obtain the form VIII crystal structure. Details of
all crystal structure determinations, along with overlays
showing the agreement between the experimental and
computer-generated structures of the ten neat polymorphs,
are provided in the SI (Sections 2.1 and 2.2, Figure S30).
The crystal structures of the GAL polymorphs show just

how diverse the crystal packing possibilities can be for a flexible
pharmaceutical,34 capable of adopting a wide range of
conformations with very different relative positions of the
hydrogen-bonding donor and acceptor groups, Figure 5. GAL,

which itself is achiral, adopts chiral (enantiomeric) con-
formations that together can crystallize in centrosymmetric
space groups. In fact, inversion-related amide dimers were
observed in all of the structures, except form VI, and with
additional hydrogen bonding, a variety of topologies, including
1D ribbons and 2D layers, formed (SI Figure S33). Despite the
awkward molecular shape of GAL, the 1D ribbons and 2D
layers that it forms are reasonably close packed in all of the
neat polymorphs, except form II, with packing indices ranging
from 0.68 to 0.73 (Figure 4). Form II is a uniquely porous
open framework structure (SI Figure S32).
To better understand how efficiently the hydrogen bonding

sites of GAL are used in the neat polymorphs, the hydrogen
bond donor−acceptor pairings in each crystal structure were
analyzed by the logit hydrogen-bonding propensity method (SI
Section 4.2).35,36 The hydrogen bond acceptors in the GAL
molecule could be ranked as follows: quinoline N1 > pyridine
N4 ≈ amide O1 > pyrazoline N2 (Figure 1). Interestingly, all
of the donor−acceptor pairings gave reasonably high
propensity values, yet except for form VII, only three of the
acceptors (quinoline N1, pyrazoline N2, amide O1) are used

in any of the structures. The fourth acceptor, pyridine N4,
despite being the second most basic site, is only involved in
hydrogen bonding for one of the symmetry-independent
molecules in form VII. The reason why such a strong acceptor
as pyridine N4 does not participate in hydrogen bonding is
apparent from the full interaction maps37 (FIMs) generated for
GAL in the neat forms. FIMs, which are intermolecular
interaction probability maps used to analyze the degree to
which hydrogen-bonding interactions are satisfied in crystal
structures, were generated using uncharged NH and carbonyl
O acceptor probes (SI Figure S34). The FIMs show that the
very different conformations of GAL all have the amide
donor−acceptor pair, quinolone N1, and pyrazoline N2
around the periphery of the molecule and available for
hydrogen bonding. Importantly, the FIMs show that hydrogen-
bonding to the pyridine N4, which is inward-facing and
sterically hindered in all but one of the observed crystal
conformations, is not statistically favorable.

Thermodynamic Stability. The thermal properties of
GAL forms I−VII were examined by DSC using fast heating
(50 °C min−1) to minimize decomposition. The melting points
of these seven polymorphs spanned a range of more than
125 °C, with form VI appearing to be the most stable (highest
melting) form at high temperatures (SI Figure S17). Melting
enthalpies were reliably measured for forms II−VII, for which
the heats of fusion varied by up to 4 kJ mol−1 (Figure 6). The
measured enthalpies of desolvate forms II and III were
consistently lower than those of forms IV−VII, which were
within the margin of error of one another (SI Table S12).
The DSC measurements were complemented with calcu-

lations of relative lattice energies using various periodic
dispersion corrected DFT methods. Figure 6 shows how
different dispersion corrections lead to different energy

Figure 5. Overlay of molecular conformations in experimentally
observed galunisertib forms I−X. Of the two mirror-related
conformations present in each structure, only those with the same
handedness are shown.

Figure 6. Experimental relative enthalpies of the GAL polymorphs
contrasted with relative lattice energies of the crystal forms and the
CSP-generated GM structure, calculated using various periodic
DFT+D methods. All polymorphs are ranked in energy relative to
the room temperature stable polymorph, form IV.
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rankings of the experimentally observed and GM hypothetical
structures. The calculations neglect zero point energies and
heat capacity contributions to the measured heats of fusion.
Form I is much higher in energy than the other neat
polymorphs, while forms II and III are, by all methods,
consistently higher in energy, in agreement with experiment.
With the PBE+NP model used in CSP2, the GM structure, at
least at 0 K, is comparable in energy to form IV, the
thermodynamically most stable polymorph at ambient temper-
ature.

■ DISCUSSION
Our exploration of the solid form landscape of GAL has
uncovered a spectacular polymorphic system. With crystal
structures having been determined for all ten of the neat forms,
GAL is unsurpassed in having the largest number of known
polymorph structures. The previous record holders, flufenamic
acid,38 aripiprazole,39 and ROY,40,41 each have evidence of
further structures and are hence more polymorphic than GAL
but to date have nine solved structures each. Solving the crystal
structures of ten polymorphs was, in this case, no small feat, as
single crystals or clearly phase pure samples were simply not
attainable for many of the forms. However, with patience,
persistence, and a little luck to generate the best samples
(single crystals or powders) possible, along with access to
state-of-the-art analytical tools and recently developed
computational methods, we were able to determine the crystal
structure of every experimentally observed polymorph. This
unprecedented access to crystallographic information has
paved the way for a detailed analysis of the structures in
relation to their properties, as well as an assessment of the
completeness of the experimental search for neat polymorphs
by comparison to structures on computed crystal energy
landscapes.
Role of Solvents in Polymorph Appearance. McCrone

postulated many years ago that the number of polymorphic
forms found is generally proportional to the effort expended in
finding them.42 Still, seeing ten true polymorphs of any
molecule is rare, even for those which have been intensively
screened.12,43 A substantially greater effort had gone into
finding different polymorphs of GAL than, for example, ROY,
where as many as 7 of 11 polymorphs have crystallized
concomitantly from the same liquid.41,44,45 Yet, we did not
resort to exotic techniques, such as heteronucleation onto
isostructural templates46,47 or polymers,48 crystallization from
complex mixtures,49,50 or nucleation under confinement51,52 to
produce ten different polymorphs. All of the neat forms of
GAL, with the notable exception of form X, were produced by
conventional methods adapted to the formation of multiple
solvates.
What sets GAL apart from other highly polymorphic

molecules is its ability to form many structurally diverse
packings with a wide range of solvents used in crystallization
and the relative ease with which the smaller solvents can be
liberated from the crystal structures upon harvesting and/or
drying the crystals. This allowed for a variety of nonsolvated
forms (I−III, V, VII−VIII) to be kinetically trapped by
desolvation.53 The structural relationship between some parent
solvates and daughter polymorphs, which might be expected to
lower the kinetic barriers to transformation along desolvation
pathways that conserve common features,54,55 was apparent by
XPac (Table S17) and Crystal Packing Similarity analysis; see
Figure 7. Obvious relationships are seen in forms I and II and

their isostructural solvate precursors, each having at least 10
overlapping molecules within 15 molecule clusters. Forms III
and V, which are exclusively derived from ethanol solvate I and
methanol solvate I, respectively, have fewer molecules in
common in their coordination shells as quantified by the
RMSD15 criterion. However, visual inspection shows aspects of
their crystal packing that appear likely to facilitate non-
destructive pathways from these parent solvates to the
respective neat forms (SI Figure S32).

Assessing the Risk of Late-Appearing Polymorphs.
Finding 10 neat polymorphs of a highly solvating molecule is
remarkable, even more so considering the constraints imposed
on the experimental solid form screen by the compound’s
chemical instability and poor solubility in some solvents (SI
Table S1). Unlike many prolific solvate formers,56 GAL is
capable of packing well in three dimensions with itself (Figure
4), and by working around competitive solvate formation, we
were able to crystallize forms IV, VI, and occasionally IX, a
disappearing polymorph,7 from solution. However, it was
difficult to find conditions where GAL crystallized on its own,
i.e., without interference from solvates. The possibility of neat
polymorphs, particularly more stable forms, having been
missed was worrisome. Our modest exploration of crystal-
lization from the melt (requiring the specialist use of pressure)
having yielded form X, raised the possibility of finding more
polymorphs upon expanding the experimental search con-
ditions.
We calculated the crystal energy landscape of GAL to assess

the completeness of our experimental search for neat
polymorphs. Many energetically competitive structures were
predicted as lattice energy minima (Figure 4), although only
some are likely to be free energy minima at crystallization
process relevant temperatures.57 Unfortunately, CSP calcu-
lations cannot anticipate which “putative” structures are likely

Figure 7. Packing similarity dendrogram showing structural relation-
ships (or lack thereof) between galunisertib solvates, the neat
polymorphs, and the GM structure.
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to crystallize as polymorphs or, for that matter, the competition
a neat form will face from energetically competitive, potentially
more stable, solvates. This means that out of all of the
unobserved crystal packings, attention will inevitably be drawn
to the global minimum structure and whether it has been
found in the solid form screen or poses a risk of being a late-
appearing polymorph. For GAL, the high density GM structure
predicted by two different CSP methods, CSP1 requiring
electronic structure calculations on all its molecular con-
formations and CSP2 using periodic DFT+D calculations on
all competitive structures, was not found.
Although the basic assumption of CSP methods has been

that the global minimum energy structure should crystallize,
Figure 6 suggests that we cannot be certain that it is the most
stable static structure, let alone the most thermodynamically
stable at crystallization conditions. The PBE functional suffers
from delocalization error58 overstabilizing charge separation,59

which can affect conformational energies.60,61 PBE is also
unable to reproduce the experimental stability order for
polymorphic systems of small molecules.62,63 As Figure 6
shows, the relative energies are sensitive to the dispersion
correction.64 Since thermodynamic stability has been approxi-
mated by the lattice energy rather than the free energy at
crystallization temperatures, it is plausible that the GM
structure will be relatively destabilized by thermal motion, as
denser rigid aromatic hydrocarbon crystal structures tend to be
destabilized by the lattice modes.65 The quality of the
computational results for the observed polymorphs suggests,
nonetheless, that the GM structure must be thermodynami-
cally competitive with the observed forms.
The prediction of a high density structure as the global

minimum justified widening the experimental search to include
crystallization under pressure, although it should be recognized
that specific high density forms cannot be targeted under such
conditions and the results of a high pressure crystallization may
depend on the pressure involved, as well as the rate of
compression.66,67 Unfortunately, our attempts to crystallize
GAL under pressure, although successful in producing form X,
failed to produce the GM structure. This prompted a closer
look into possible reasons why the global minimum structure
might be kinetically inaccessible. Our “health check”68 of the
GM crystal structure compared and contrasted it to structures
that have crystallized, not only the 10 GAL polymorphs, but
also the nearly one million structures in the Cambridge
Structural Database, to identify factors or anomalies which
might hinder the first nucleation of this form.
GAL adopts a wide range of conformations in the 10 neat

polymorphs, all of which are distorted by crystal packing forces
to lower the lattice (free) energy. The molecular strain
energy69 is higher for GAL in the GM structure than in any of
the known polymorphs but only marginally so relative to one
of the independent molecules in form VII (Figure 4, SI Table
S20). Given that form VII has only ever been trapped by
desolvation, it is possible that the highly strained conformation
in the GM structure will be difficult to access in solution or the
melt. However, the strain energy is not so high as to rule out
the GM structure from alternate approaches, e.g., desolvation.
Desolvation would, of course, require both a structurally
related solvate and a kinetically favorable transformation
pathway, neither of which is assured. Similarly, whether there
is a related molecule that crystallizes in a sufficiently similar
structure to the GM to be used as a template, either
intentionally or accidentally (as an impurity), is far from

guaranteed.70 How can we be confident that the GM could
never appear?
In addition to the conformational bias against the GM

structure, the hydrogen bonding in this structure is far from
optimal. Pyridine N4, which is rarely used in the GAL
polymorphs but has a high propensity to accept hydrogen
bonds, is used in the GM structure. However, the geometry of
the hydrogen-bonding interaction to pyridine N4 is highly
distorted (Figure 8). The absence of a hot spot near N4 in the

full interaction map of GAL suggests that the pyridine acceptor
is sterically hindered in the GM crystal conformer and
therefore not readily accessible to hydrogen-bond donors.
This may hinder the formation of the GM as molecules are
likely to get trapped in a conformation allowing stronger,
directional hydrogen bonds (cf. 3-chloromandelic acid71).
Collectively, the liabilities of the GM structure revealed in the
health check help to explain why it has yet to crystallize and,
more importantly, why it may be so kinetically hindered that
its appearance would not pose a significant threat to the
development of GAL.

■ CONCLUSIONS
Galunisertib now holds the distinction of being the system
with the most structurally characterized polymorphs. Observ-
ing 10 neat forms, and moreover determining their crystal
structures, is particularly remarkable considering that GAL is
also one of the most prolific solvate forming molecules on
record. However, crystal structure prediction suggests there are
more polymorphs to be found, a reminder that we still have
much to learn about the polymorphism and crystallization of
conformationally flexible molecules. With 10 fully character-
ized crystal structures, experimentally determined energy
relationships, and the real possibility of finding more forms,
GAL is a perfect model system for developing computational
methods for relative thermodynamic stability as well as
exploring novel experimental approaches for polymorph
discovery and structural characterization.

■ MATERIALS AND METHODS
Materials. GAL monohydrate (purity >99%) was obtained from

Lilly Research Laboratories. All solvents, purchased from different
suppliers and used for crystallization screening, were reagent grade.

Solid form screening encompassed a range of industry standard
techniques, including slurry equilibration, solvent evaporation,
cooling, standard and inverse antisolvent addition, and vapor
diffusion. Unless specified otherwise, galunisertib monohydrate was

Figure 8. Full interaction map of the global energy minimum
structure (GM) of galunisertib showing a statistically improbable
hydrogen-bonding interaction to N4. Hydrogen-bond donor and
acceptor hotspots were surveyed using carbonyl O acceptor (red) and
uncharged NH donor (blue) probes. Hydrogen bonds are shown as
red lines.
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used as the starting material. The monohydrate and all newly
discovered neat and solvated forms were exposed to a variety of
temperature and humidity conditions in search of additional forms
produced by solid state conversion, desolvation, and solvent exchange.
Details of the crystallization conditions surveyed in the solid form
screen and the preparation of the neat galunisertib polymorphs,
numbered in the order observed, are reported in the SI.
Characterization. Single-Crystal X-ray Diffraction (SCXRD). X-

ray diffraction data were collected on a Bruker three-circle
diffractometer, equipped with a graphite monochromator, Bruker
SMART-6000 CCD, or Photon-1000 CMOS detector and using
either Cu Kα (λ = 1.54178 Å) radiation from a microfocus sealed
tube or Mo Kα (λ = 0.71073 Å) radiation from an IμS microsource.
All data were collected at 100 K using an Oxford Cryosystems
Cryostream. Single-crystal X-ray diffraction data were also collected
on a Rigaku Oxford Diffraction SuperNova diffractometer with Cu Kα
radiation.
High-pressure diffraction data were collected using synchrotron

radiation of wavelength λ = 0.4859 Å at room temperature on a
Newport IS4CCD (four circle) diffractometer with a Pilatus 300 K
detector at beamline I19 at the Diamond Light Source, Harwell
Science and Innovation Campus.72

Details of the crystal structure solution and refinement are provided
in SI Section 2.1.
Powder X-ray Diffraction (PXRD). X-ray diffraction patterns were

collected at room temperature for lightly ground samples loaded into
0.7 or 1 mm borosilicate capillaries. A PANalytical Empyrean
diffractometer, equipped with a θ/θ coupled goniometer in trans-
mission geometry, Cu Kα1,2 radiation source with a focusing mirror,
0.5° divergence slit, 20 mm mask, 0.25° antiscatter slit and 0.02°
soller slit on the incident beam side, a 7.5 mm antiscattering slit and
0.02° soller slit on the diffracted beam side, and a solid state PIXcel
3D detector, was used. A repeated scan scheme73 was used to collect
data for samples in rotating capillaries, and the diffractometer was
operated at a tube voltage of 45 kV and tube current of 40 mA using a
2θ step size of 0.013° with 350/800 s per step with 5/15 repeats in
the range of 2−70° 2θ. Data analysis was carried out using HighScore
Plus 4.0.
The powder diffraction patterns collected for forms I, V, and IX

were used to solve their crystal structures. Each pattern was indexed
using the 20 lowest angle peaks with the DICVOL04 program as
implemented in DASH74 (v3.4.0), and space groups were determined
based on volume considerations, a statistical assessment of the
systematic absences75 as implemented in the DASH structure solution
package, and a check using the ADDSYM function in PLATON.76

Forms VII and VIII candidate structures were identified among the
CSP structures. Pawley-type77 and Rietveld78 refinement were
performed with Topas Academic V5.79 The background was modeled
with Chebyshev polynomials, and the modified Thompson−Cox−
Hastings pseudo-Voigt function was used for peak shape fitting.
Details of the powder structure solutions are given in SI Section 2.2.
Thermal Analysis. Differential scanning calorimetry (DSC) was

conducted using a TA Instruments Modulated DSC Q1000. Samples
were equilibrated at 25 °C in inverted hermetically sealed aluminum
pans and then heated to 300 °C at 50 °C min−1 with a 50 mL min−1

N2 gas purge. The fast heating rate was required to minimize
decomposition during the analysis. The temperature and heat flow
were calibrated against indium melting.
Calculation and Analysis of Crystal Energy Landscapes.

CSP1. CrystalPredictor80,81 (version 1.6) was used to generate
approximately two million Z′ = 1 structures of GAL in three
conformational regions, two of which (A and B) had been observed in
the single-crystal structures of solvates and the third (C) with an
intramolecular N5−H19···N4 bond. CrystalOptimizer82−84 was used
to refine over 4000 of the lowest energy unique structures, allowing
the conformation to respond to the packing forces.
CSP2. The GRACE program (version 2.430) was used to expand

the search for GAL crystal structures to include both Z′ = 1 and Z′ =
2. For Z′ = 1, the 38 most common space groups were used, and for
Z′ = 2, 19 space groups were included (SI Section 3.2). A custom-

made force field was parametrized to DFT+D reference data, and
crystal structures were generated by parallel tempering with that force
field. Finally, the structures were reoptimized with periodic DFT+D as
implemented in VASP 5.4.1, using the PBE functional, the
Neumann−Perrin (NP) dispersion correction, a plane wave basis
set (520 eV, 2π × 0.07 Å−1 k-point grid), and default PAW
pseudopotentials (PBE+NP).

Observed polymorphs were matched to CSP-generated structures
using two methods. When the experimental crystal structure was
available, the packing similarity tool as implemented in COMPACK/
Mercury/CCDC Python API was used to attempt to overlay a cluster
of 15 or 20 molecules and calculate the root-mean-square distance
between heavy atoms in the clusters (RMSD15/20).

85 When the
experimental structure was not known, the simulated PXRD patterns
or indexed cell parameters were manually compared for CSP1. For
forms VII and VIII, the PXRD pattern similarity was calculated as a
cross-correlation,33 allowing adjustments to unit cell parameters and
the positions of molecules, in order to account for thermal expansion.

Periodic electronic structure calculations were performed using the
CASTEP86,87 plane wave code, as implemented in BIOVIA Materials
Studio 2016, using the PBE generalized gradient approximation
(GGA) exchange-correlation density functional88 and ultrasoft
pseudopotentials89 along with a semiempirical Tkatchenko and
Scheffler (TS) dispersion correction,90 a k-point spacing of 2π ×
0.05 Å−1, and a 780 eV cutoff energy for the plane wave basis (PBE
+TS). Hydrogen atom positions, all atom positions, and the whole
cell were sequentially optimized to find the energy minimum closest
to the input structure. The energy at the minimum located using the
TS dispersion correction was then re-evaluated with the D2
dispersion correction (PBE+D2). Periodic electronic structure
optimizations were also performed using the PBE functional with
the D3BJ dispersion correction (PBE+D3BJ) using VASP 5.4.1,91−94

a 520 eV cutoff energy, and 2π × 0.032 Å−1 k-point distance.
Molecular strain energies were calculated by computationally

extracting molecules from the crystal structure, performing a
constrained optimization and finally allowing them to relax in
vacuum. The strain energy was calculated with Gaussian 1695 as the
difference in B3LYP+D3BJ/6-311G** energy between the con-
strained and relaxed conformers.

Analysis of the hydrogen-bonding motifs96 and crystal packing
similarity,97 and generation of full interaction maps37 were performed
using Mercury (version 3.9). The crystal packing similarity between
15 molecule GAL clusters in the neat polymorphs, solvates (with
solvent molecules removed), and the GM structure was analyzed
using a CCDC Python API script.
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