305 research outputs found
Mass Parameterizations and Predictions of Isotopic Observables
We discuss the accuracy of mass models for extrapolating to very asymmetric
nuclei and the impact of such extrapolations on the predictions of isotopic
observables in multifragmentation. We obtain improved mass predictions by
incorporating measured masses and extrapolating to unmeasured masses with a
mass formula that includes surface symmetry and Coulomb terms. We find that
using accurate masses has a significant impact on the predicted isotopic
observables.Comment: 12 pages, 4 figure
Isotopic Scaling of Heavy Projectile Residues from the collisions of 25 MeV/nucleon 86Kr with 124Sn, 112Sn and 64Ni, 58Ni
The scaling of the yields of heavy projectile residues from the reactions of
25 MeV/nucleon 86Kr projectiles with 124Sn,112Sn and 64Ni, 58Nitargets is
studied. Isotopically resolved yield distributions of projectile fragments in
the range Z=10-36 from these reaction pairs were measured with the MARS recoil
separator in the angular range 2.7-5.3 degrees. The velocities of the residues,
monotonically decreasing with Z down to Z~26-28, are employed to characterize
the excitation energy. The yield ratios R21(N,Z) for each pair of systems are
found to exhibit isotopic scaling (isoscaling), namely, an exponential
dependence on the fragment atomic number Z and neutron number N. The isoscaling
is found to occur in the residue Z range corresponding to the maximum observed
excitation energies. The corresponding isoscaling parameters are alpha=0.43 and
beta=-0.50 for the Kr+Sn system and alpha=0.27 and beta=-0.34 for the Kr+Ni
system. For the Kr+Sn system, for which the experimental angular acceptance
range lies inside the grazing angle, isoscaling was found to occur for Z<26 and
N<34. For heavier fragments from Kr+Sn, the parameters vary monotonically,
alpha decreasing with Z and beta increasing with N. This variation is found to
be related to the evolution towards isospin equilibration and, as such, it can
serve as a tracer of the N/Z equilibration process. The present heavy-residue
data extend the observation of isotopic scaling from the intermediate mass
fragment region to the heavy-residue region. Such high-resolution mass
spectrometric data can provide important information on the role of isospin in
peripheral and mid-peripheral collisions, complementary to that accessible from
modern large-acceptance multidetector devices.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Giant pulses of pulsar radio emission
Review report of giant pulses of pulsar radio emission, based on our
detections of four new pulsars with giant pulses, and the comparative analysis
of the previously known pulsars with giant pulses, including the Crab pulsar
and millisecond pulsar PSR B1937+21.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and
Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany,
May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.72-7
Isospin Effects in Nuclear Multifragmentation
We develop an improved Statistical Multifragmentation Model that provides the
capability to calculate calorimetric and isotopic observables with precision.
With this new model we examine the influence of nuclear isospin on the fragment
elemental and isotopic distributions. We show that the proposed improvements on
the model are essential for studying isospin effects in nuclear
multifragmentation. In particular, these calculations show that accurate
comparisons to experimental data require that the nuclear masses, free energies
and secondary decay must be handled with higher precision than many current
models accord.Comment: 46 pages, 16 figure
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV
We present the first measurement of the inclusive three-jet differential
cross section as a function of the invariant mass of the three jets with the
largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96
TeV. The measurement is made in different rapidity regions and for different
jet transverse momentum requirements and is based on a data set corresponding
to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at
the Fermilab Tevatron Collider. The results are used to test the three-jet
matrix elements in perturbative QCD calculations at next-to-leading order in
the strong coupling constant. The data allow discrimination between
parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected
chi2 values for NNPD
Measurements of inclusive W+jets production rates as a function of jet transverse momentum in ppbar collisions at sqrt{s}=1.96 TeV
This Letter describes measurements of inclusive W (--> e nu) + n jet cross
sections (n = 1-4), presented as total inclusive cross sections and
differentially in the nth jet transverse momentum. The measurements are made
using data corresponding to an integrated luminosity of 4.2 fb-1 collected by
the D0 detector at the Fermilab Tevatron Collider, and achieve considerably
smaller uncertainties on W +jets production cross sections than previous
measurements. The measurements are compared to next-to-leading order
perturbative QCD (pQCD) calculations in the n =1-3 jet multiplicity bins and to
leading order pQCD calculations in the 4-jet bin. The measurements are
generally in agreement with pQCD predictions, although certain regions of phase
space are identified where the calculations could be improved
Measurement of spin correlation in ttbar production using dilepton final states
We measure the correlation between the spin of the top quark and the spin of
the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final
states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96
TeV, where l is an electron or muon. The data correspond to an integrated
luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab
Tevatron collider. The correlation is extracted from the angles of the two
leptons in the t and tbar rest frames, yielding a correlation strength C=
0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two
standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
Measurement of the ttbar production cross section using dilepton events in ppbar collisions
We present a measurement of the ttbar production cross section sigma(ttbar)
in ppbar collisions at sqrt{s} = 1.96 TeV using 5.4 fb-1 of integrated
luminosity collected with the D0 detector. We consider final states with at
least two jets and two leptons (ee, emu, mumu), and events with one jet for the
the emu final state as well. The measured cross section is sigma(ttbar)= 7.36
+0.90-0.79 (stat + syst) pb. This result combined with the cross section
measurement in the lepton + jets final state yields sigma(ttbar)=7.56
+0.63-0.56 (stat + syst) pb, which agrees with the standard model expectation.
The relative precision of 8% of this measurement is comparable to the latest
theoretical calculations.Comment: 9 pages, published in Phys. Lett.
Search for single top quarks in the tau+jets channel using 4.8 fb of collision data
We present the first direct search for single top quark production using tau
leptons. The search is based on 4.8 fb of integrated luminosity
collected in collisions at =1.96 TeV with the D0 detector
at the Fermilab Tevatron Collider. We select events with a final state
including an isolated tau lepton, missing transverse energy, two or three jets,
one or two of them tagged. We use a multivariate technique to discriminate
signal from background. The number of events observed in data in this final
state is consistent with the signal plus background expectation. We set in the
tau+jets channel an upper limit on the single top quark cross section of
\TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected
sensitivity for the observation of single top production when combining it with
electron+jets and muon+jets channels already published by the D0 collaboration
with 2.3 fb of data. We measure a combined cross section of
\SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure
- …