33 research outputs found

    Calcium signaling in oomycetes: an evolutionary perspective

    Get PDF
    Oomycetes are a family of eukaryotic microbes that superficially resemble fungi, but which are phylogenetically distinct from them. These organisms cause major global economic losses to agriculture and fisheries, with representative pathogens being Phytophthora infestans, the cause of late potato blight and Saprolegnia diclina, the instigator of “cotton molds” in fish. As in all eukaryotes, cytoplasmic Ca2+ is a key second messenger in oomycetes, regulating life-cycle transitions, controlling motility and chemotaxis and, in excess, leading to cell-death. Despite this, little is known about the molecular mechanisms regulating cytoplasmic Ca2+ concentrations in these organisms. Consequently, this review analyzed the presence of candidate calcium channels encoded within the nine oomycete genomes that are currently available. This revealed key differences between oomycetes and other eukaryotes, in particular the expansion and loss of different channel families, and the presence of a phylum-specific group of proteins, termed the polycystic kidney disease tandem ryanodine receptor domain (PKDRR) channels

    FKBP12 associates tightly with the skeletal muscle type 1 ryanodine receptor, but not with other intracellular calcium release channels

    Get PDF
    AbstractThis study compared the relative levels of ryanodine receptor (RyR) isoforms, inositol 1,4,5-trisphosphate receptor (IP3R) isoforms, and calcineurin, plus their association with FKBP12 in brain, skeletal and cardiac tissue. FKBP12 demonstrated a very tight, high affinity association with skeletal muscle microsomes, which was displaced by FK506. In contrast, FKBP12 was not tightly associated with brain or cardiac microsomes and did not require FK506 for removal from these organelles. Furthermore, of the proteins solubilised from skeletal muscle, cardiac muscle and brain microsomes, only skeletal muscle RyR1 bound to an FKBP12–glutathione-S-transferase fusion protein, in a high affinity FK506 displaceable manner. These results suggest that RyR1 has distinctive FKBP12 binding properties when compared to RyR2, RyR3, all IP3R isoforms and calcineurin

    Compliance of the fish outflow tract is altered by thermal acclimation through connective tissue remodelling

    Get PDF
    From The Royal Society via Jisc Publications RouterHistory: received 2021-06-14, accepted 2021-10-26, collection 2021-11, pub-electronic 2021-11-17Article version: VoRPublication status: PublishedFunder: BBSRCFunder: Leverhulme Trust; Id: http://dx.doi.org/10.13039/501100000275; Grant(s): 240613To protect the gill capillaries from high systolic pulse pressure, the fish heart contains a compliant non-contractile chamber called the bulbus arteriosus which is part of the outflow tract (OFT) which extends from the ventricle to the ventral aorta. Thermal acclimation alters the form and function of the fish atria and ventricle to ensure appropriate cardiac output at different temperatures, but its impact on the OFT is unknown. Here we used ex vivo pressure–volume curves to demonstrate remodelling of passive stiffness in the rainbow trout (Oncorhynchus mykiss) bulbus arteriosus following more than eight weeks of thermal acclimation to 5, 10 and 18°C. We then combined novel, non-biased Fourier transform infrared spectroscopy with classic histological staining to show that changes in compliance were achieved by changes in tissue collagen-to-elastin ratio. In situ gelatin zymography and SDS-PAGE zymography revealed that collagen remodelling was underpinned, at least in part, by changes in activity and abundance of collagen degrading matrix metalloproteinases. Collectively, we provide the first indication of bulbus arteriosus thermal remodelling in a fish and suggest this remodelling ensures optimal blood flow and blood pressure in the OFT during temperature change

    The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal-autophagic-lysosomal system

    Get PDF
    Abnormalities in the endosomal-autophagic-lysosomal (EAL) system are an early event in Alzheimer's disease (AD) pathogenesis. However, the mechanisms underlying these abnormalities are unclear. The transient receptor potential channel mucolipin 1(TRPML1, also known as MCOLN1), a vital endosomal-lysosomal Ca2+ channel whose loss of function leads to neurodegeneration, has not been investigated with respect to EAL pathogenesis in late-onset AD (LOAD). Here, we identify pathological hallmarks of TRPML1 dysregulation in LOAD neurons, including increased perinuclear clustering and vacuolation of endolysosomes. We reveal that induced pluripotent stem cell (iPSC)-derived human cortical neurons expressing APOE Δ4, the strongest genetic risk factor for LOAD, have significantly diminished TRPML1-induced endolysosomal Ca2+ release. Furthermore, we found that blocking TRPML1 function in primary neurons by depleting the TRPML1 agonist PI(3,5)P2 via PIKfyve inhibition, recreated multiple features of EAL neuropathology evident in LOAD. This included increased endolysosomal Ca2+ content, enlargement and perinuclear clustering of endolysosomes, autophagic vesicle accumulation and early endosomal enlargement. Strikingly, these AD-like neuronal EAL defects were rescued by TRPML1 reactivation using its synthetic agonist ML-SA1. These findings implicate defects in TRPML1 in LOAD EAL pathogenesis and present TRPML1 as a potential therapeutic target

    Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica

    Get PDF
    Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na-rich marine environment. R. baltica also possesses a Na-translocating NADH:quinone dehydrogenase (Na-NDH), a Na efflux decarboxylase, two Na-exporting ABC pumps, two Na-translocating F-type ATPases, two Na:H antiporters and two K:H antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica

    Cultural geographies of extinction: animal culture amongst Scottish ospreys

    Get PDF
    This paper explores cultural geographies of extinction. I trace the decline of the Scottish osprey during the nineteenth century, and its enduring, haunting presence in the landscape today. Taking inspiration from the environmental humanities, extinction is framed as an event affecting losses that exceed comprehension in terms merely of biological species numbers and survival rates. Disavowing the ‘species thinking’ of contemporary conservation biopolitics, the osprey’s extinction story pays attention to the worth of ‘animal cultures’. Drawing a hybrid conceptual framework from research in the environmental humanities, ‘speculative’ ethology and more-than-human geographies, I champion an experimental attention to the cultural geographies of animals in terms of historically contingent, communally shared, spatial practices and attachments. In doing so, I propose nonhuman cultural geographies as assemblages that matter, and which are fundamentally at stake in the face of extinction

    Implication of Oxysterols in Infectious and Non-Communicable Inflammatory Diseases

    No full text
    Oxysterols, derived from cholesterol oxidation, are formed either by autoxidation, via enzymes, or by both processes [...
    corecore