36 research outputs found

    A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study.

    Get PDF
    Funder: Victorian Cancer AgencyFunder: NIHR Manchester Biomedical Research CentreFunder: Cancer Research UKFunder: Cancer Council TasmaniaFunder: Instituto de Salud Carlos IIIFunder: Cancer AustraliaFunder: NIHR Oxford Biomedical Research CentreFunder: Fundación Científica de la Asociación Española Contra el CáncerFunder: Cancer Council South AustraliaFunder: Swedish Cancer SocietyFunder: NIHR Cambridge Biomedical Research CentreFunder: Institut Català de la SalutFunder: Cancer Council VictoriaFunder: Prostate Cancer Foundation of AustraliaFunder: National Institutes of HealthBACKGROUND: Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. METHODS: The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3·0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This study is registered with ClinicalTrials.gov, NCT00261456, and is now closed to accrual. FINDINGS: Between Sept 28, 2012, and March 1, 2020, 828 men were recruited (644 carriers of mismatch repair pathogenic variants [204 carriers of MLH1, 305 carriers of MSH2, and 135 carriers of MSH6] and 184 non-carrier controls [65 non-carriers of MLH1, 76 non-carriers of MSH2, and 43 non-carriers of MSH6]), and in order to boost the sample size for the non-carrier control groups, we randomly selected 134 non-carriers from the BRCA1 and BRCA2 cohort of the IMPACT study, who were included in all three non-carrier cohorts. Men were predominantly of European ancestry (899 [93%] of 953 with available data), with a mean age of 52·8 years (SD 8·3). Within the first screening round, 56 (6%) men had a PSA concentration of more than 3·0 ng/mL and 35 (4%) biopsies were done. The overall incidence of prostate cancer was 1·9% (18 of 962; 95% CI 1·1-2·9). The incidence among MSH2 carriers was 4·3% (13 of 305; 95% CI 2·3-7·2), MSH2 non-carrier controls was 0·5% (one of 210; 0·0-2·6), MSH6 carriers was 3·0% (four of 135; 0·8-7·4), and none were detected among the MLH1 carriers, MLH1 non-carrier controls, and MSH6 non-carrier controls. Prostate cancer incidence, using a PSA threshold of higher than 3·0 ng/mL, was higher in MSH2 carriers than in MSH2 non-carrier controls (4·3% vs 0·5%; p=0·011) and MSH6 carriers than MSH6 non-carrier controls (3·0% vs 0%; p=0·034). The overall positive predictive value of biopsy using a PSA threshold of 3·0 ng/mL was 51·4% (95% CI 34·0-68·6), and the overall positive predictive value of a PSA threshold of 3·0 ng/mL was 32·1% (20·3-46·0). INTERPRETATION: After the first screening round, carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of prostate cancer compared with age-matched non-carrier controls. These findings support the use of targeted PSA screening in these men to identify those with clinically significant prostate cancer. Further annual screening rounds will need to confirm these findings. FUNDING: Cancer Research UK, The Ronald and Rita McAulay Foundation, the National Institute for Health Research support to Biomedical Research Centres (The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Oxford; Manchester and the Cambridge Clinical Research Centre), Mr and Mrs Jack Baker, the Cancer Council of Tasmania, Cancer Australia, Prostate Cancer Foundation of Australia, Cancer Council of Victoria, Cancer Council of South Australia, the Victorian Cancer Agency, Cancer Australia, Prostate Cancer Foundation of Australia, Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), the Institut Català de la Salut, Autonomous Government of Catalonia, Fundação para a Ciência e a Tecnologia, National Institutes of Health National Cancer Institute, Swedish Cancer Society, General Hospital in Malmö Foundation for Combating Cancer

    Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores

    Get PDF
    Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. Methods: 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.Peer reviewe

    Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer

    Get PDF
    Peer reviewe

    Polygenic Risk Modelling for Prediction of Epithelial Ovarian Cancer Risk

    Get PDF
    Funder: Funding details are provided in the Supplementary MaterialAbstractPolygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally-efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, “select and shrink for summary statistics” (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestry; 7,669 women of East Asian ancestry; 1,072 women of African ancestry, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestry. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38(95%CI:1.28–1.48,AUC:0.588) per unit standard deviation, in women of European ancestry; 1.14(95%CI:1.08–1.19,AUC:0.538) in women of East Asian ancestry; 1.38(95%CI:1.21-1.58,AUC:0.593) in women of African ancestry; hazard ratios of 1.37(95%CI:1.30–1.44,AUC:0.592) in BRCA1 pathogenic variant carriers and 1.51(95%CI:1.36-1.67,AUC:0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs.</jats:p

    Deletions on chromosome 4 in sporadic and BRCA mutated tumors and association with pathological variables

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Chromosomal aberrations in breast tumors from BRCA1 and BRCA2 germ-line mutation carriers are considerably more frequent than what is seen in sporadic breast tumors. According to Comparative Genomic Hybridisation analysis (CGH), deletions on chromosome 4 are one of the most frequent events in BRCA1-associated tumors, suggesting inactivation of specific tumor suppressor genes. MATERIALS AND METHODS: In the present study, 16 microsatellite markers covering chromosome 4 were used to map loss of heterozygosity (LOH) in tumors from BRCA1 (n=41) as well as in tumors from BRCA2 (n=66) mutation carriers and in tumors from unselected cases of breast cancer (n =68). RESULTS: The frequency of LOH in these groups ranged from 16-73% in BRCA1-associated tumors, 13-42% in BRCA2-associated tumors and 8-33% in unselected tumors. LOH was significantly more frequent in BRCA1-associated tumors as compared to BRCA2-associated tumors and unselected tumors, and particularly high (over 70%) at 4q35.2. Pathological variables that were found significantly associated (p< or =0.05) with LOH at specific markers were: high percentage of cells in S-phase, negative estrogen receptor status, young age at diagnosis and large tumors. Deletion mapping indicates the existence of seven non-overlapping regions at chromosome 4, which were identified in all three groups of tumors. Three of these seven regions, 4p16.3-p16.1, 4q27-q32.1 and 4q35.1-4qter, have not been reported in breast cancer previously. CONCLUSION: The results manifest the frequent alterations of chromosome 4 in BRCA1-associated breast tumors and indicate the location of several genes of potential importance in breast cancer development

    Deletions on chromosome 4 in sporadic and BRCA mutated tumors and association with pathological variables

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldBACKGROUND: Chromosomal aberrations in breast tumors from BRCA1 and BRCA2 germ-line mutation carriers are considerably more frequent than what is seen in sporadic breast tumors. According to Comparative Genomic Hybridisation analysis (CGH), deletions on chromosome 4 are one of the most frequent events in BRCA1-associated tumors, suggesting inactivation of specific tumor suppressor genes. MATERIALS AND METHODS: In the present study, 16 microsatellite markers covering chromosome 4 were used to map loss of heterozygosity (LOH) in tumors from BRCA1 (n=41) as well as in tumors from BRCA2 (n=66) mutation carriers and in tumors from unselected cases of breast cancer (n =68). RESULTS: The frequency of LOH in these groups ranged from 16-73% in BRCA1-associated tumors, 13-42% in BRCA2-associated tumors and 8-33% in unselected tumors. LOH was significantly more frequent in BRCA1-associated tumors as compared to BRCA2-associated tumors and unselected tumors, and particularly high (over 70%) at 4q35.2. Pathological variables that were found significantly associated (p< or =0.05) with LOH at specific markers were: high percentage of cells in S-phase, negative estrogen receptor status, young age at diagnosis and large tumors. Deletion mapping indicates the existence of seven non-overlapping regions at chromosome 4, which were identified in all three groups of tumors. Three of these seven regions, 4p16.3-p16.1, 4q27-q32.1 and 4q35.1-4qter, have not been reported in breast cancer previously. CONCLUSION: The results manifest the frequent alterations of chromosome 4 in BRCA1-associated breast tumors and indicate the location of several genes of potential importance in breast cancer development

    Tumour diploidy and survival in breast cancer patients with BRCA2 mutations.

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageIt is not well known to what extent carrying a BRCA2 mutation affects the survival of women with breast cancer and prognostic factors among BRCA2-positive women warrant investigation. Using a record linkage approach we compared the long-term survival in carriers and noncarriers of an inherited BRCA2 founder mutation (999del5), and sought to identify prognostic factors among the BRCA2 mutation-positive subset, including markers of genetic instability (aneuploidy) and mitotic activity (S-phase fraction). We established the genetic status of 2,967 Icelandic breast cancer patients (215 mutation carriers and 2,752 noncarriers) diagnosed from 1955 to 2004, representing 72 % of all cases diagnosed in the country during this period. Tumour ploidy and S-phase fraction were assessed on tumour cells by DNA flow cytometry. Prognostic factors were assessed blindly with respect to mutation status. Univariate and multivariate hazard ratios (HR) were estimated for breast cancer-specific survival by BRCA2 status, using Cox regression. After a median follow-up of 9.5 years, BRCA2 mutation carriers had a higher risk of death from breast cancer than noncarriers (HR 1.64, 95 % CI 1.24-2.16, p < 0.001). The risk increase was restricted to women with diploid tumours (HR 3.03, 95 % CI 1.91-4.79, p < 0.001). Among breast cancer patients with aneuploid tumours, survival of carriers was similar to that of noncarriers (HR 0.76, 95 % CI 0.41-1.41, p = 0.38). Increased tumour size and a positive nodal status predicted worse prognosis in all patients, whereas the highly correlated prognostic factors diploidy, low proliferative activity and a positive estrogen receptor status had reverse effects in mutation carriers and noncarriers. Breast cancer patients who carry the Icelandic founder BRCA2 mutation have inferior long-term survival than noncarriers, but the adverse prognosis is restricted to mutation carriers with diploid, slowly proliferating tumours.Icelandic Cancer Society US Army Medical Research Acquisition Activity DAMD17-97-1-7002 DAMD17-99-1-921

    Oestrogen receptor status, treatment and breast cancer prognosis in Icelandic BRCA2 mutation carriers.

    No full text
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageThe impact of an inherited BRCA2 mutation on the prognosis of women with breast cancer has not been well documented. We studied the effects of oestrogen receptor (ER) status, other prognostic factors and treatments on survival in a large cohort of BRCA2 mutation carriers.We identified 285 breast cancer patients with a 999del5 BRCA2 mutation and matched them with 570 non-carrier patients. Clinical information was abstracted from patient charts and pathology records and supplemented by evaluation of tumour grade and ER status using archived tissue specimens. Univariate and multivariate hazard ratios (HR) were estimated for breast cancer-specific survival using Cox regression. The effects of various therapies were studied in patients treated from 1980 to 2012.Among mutation carriers, positive ER status was associated with higher risk of death than negative ER status (HR=1.94; 95% CI=1.22-3.07, P=0.005). The reverse association was seen for non-carriers (HR=0.71; 95% CI: 0.51-0.97; P=0.03).Among BRCA2 carriers, ER-positive status is an adverse prognostic factor. BRCA2 carrier status should be known at the time when treatment decisions are made.Icelandic Cancer Society Icelandic Centre for Research/14193-051 Icelandic breast cancer research support group Gongum sama
    corecore