50 research outputs found

    Sampling Visual Space: Topography, colour vision and visually guided predator avoidance in fiddler crabs (Uca vomeris)

    No full text
    Many animals use vision to guide their behaviour and to collect relevant information about their environment. The diversity of visual environments and of visually guided tasks has led to a large variety of specialisations of eyes and visual systems. Our knowledge, however, about how the anatomical and physiological properties of eyes and the behavioural strategies of animals relate to the visual signals that are important to them in their natural environment, is extremely limited. In this thesis, I make use of optical, physiological and behavioural analyses to reconstruct the flow of visual information that the fiddler crab Uca vomeris experiences during its daily life on the mudflat. I present a detailed analysis of the first stage of visual processing, the sampling by the ommatidial array of the crabs' compound eye and demonstrate how regional specialisations of optical and sampling resolution reflect the information content and behavioural relevance of different parts of the visual field. Having developed the first intracellular electrophysiological preparation in fiddler crabs, I then examine the spectral sensitivities of photoreceptors - the basis for colour vision. I show that the crabs possess an unusual trichromatic colour vision system featuring a UV-sensitive and a variety of short-wavelength receptor types based on the coexpression of two short-wavelength sensitive pigments. Finally, the natural visual signals that predatory and non-predatory birds present to fiddler crabs are described. The visual cues the crabs use when deciding whether and when to respond to these potential predators are analysed and compared to those used in dummy predator experiments. The crabs use a decision criterion that combines multiple visual cues - including retinal speed, elevation and visual flicker. Neither of these cues accurately predicts risk, but together they reflect the statistical properties of the natural signals the crabs experience. The complex interactions between the design of the crabs' visual system, the stimuli they experience in their natural context and their behaviour demonstrate that neither of them can be understood without knowledge of the other two.Research School of Biological Sciences (RSBS, now RSB), and the Australian National University for providing funding through an ANU PhD scholarship; the Australian Department of Education, Employment and Workplace Relations for an International Postgraduate Research Scholarship; the German National Academic Foundation and the Zeiss Foundation for support through a Heinz-Dürr Scholarship; and the Australian Institute of Marine Sciences for providing accommodation and facilities during fieldwork in Queensland

    Natural visual cues eliciting predator avoidance in fiddler crabs

    Get PDF
    To efficiently provide an animal with relevant information, the design of its visual system should reflect the distribution of natural signals and the animal’s tasks. In many behavioural contexts, however, we know comparatively little about the moment-to-moment information-processing challenges animals face in their daily lives. In predator avoidance, for instance, we lack an accurate description of the natural signal stream and its value for risk assessment throughout the prey’s defensive behaviour.We characterized the visual signals generated by real, potentially predatory events by video-recording bird approaches towards an Uca vomeris colony. Using four synchronized cameras allowed us to simultaneously monitor predator avoidance responses of crabs. We reconstructed the signals generated by dangerous and non-dangerous flying animals, identified the cues that triggered escape responses and compared them with those triggering responses to dummy predators. Fiddler crabs responded to a combination of multiple visual cues (including retinal speed, elevation and visual flicker) that reflect the visual signatures of distinct bird and insect behaviours. This allowed crabs to discriminate between dangerous and non-dangerous events. The results demonstrate the importance of measuring natural sensory signatures of biologically relevant events in order to understand biological information processing and its effects on behavioural organization

    A new galloping gait in an insect

    Get PDF
    An estimated three million insect species all walk using variations of the alternating tripod gait. At any one time, these animals hold one stable triangle of legs steady while swinging the opposite triangle forward. Here, we report the discovery that three different flightless desert dung beetles use an additional gallop-like gait, which has never been described in any insect before. Like a bounding hare, the beetles propel their body forward by synchronously stepping with both middle legs and then both front legs. Surprisingly, this peculiar galloping gait delivers lower speeds than the alternating tripod gait. Why these beetles have shifted so radically away from the most widely used walking style on our planet is as yet unknown

    Dung beetles use their dung ball as a mobile thermal refuge

    Get PDF
    At midday, surface temperatures in the desert often exceed 60°C. To be active at this time, animals need extraordinary behavioural or physiological adaptations. Desert ants, for instance, spend up to 75% of their foraging time cooling down on elevated thermal refuges such as grass stalks [1]. Ball-rolling dung beetles work under similar thermal conditions in South African savannahs. After landing at a fresh dung pile, a beetle quickly forms a dung ball and rolls it away in a straight line, head down, walking backwards [2]. Earlier studies have shown that some dung beetles maintain an elevated body temperature to gain a competitive advantage [3], [4] and [5], and that heat shunting may prevent overheating during flight [6] and [7]. However, we know little about the behavioural strategies beetles might employ to mitigate heat stress while rolling their dung balls. Using infrared thermography and behavioural experiments, we show here that dung beetles use their dung ball as a mobile thermal refuge onto which they climb to cool down while rolling across hot soil. We further demonstrate that the moist ball functions not only as a portable platform, but also as a heat sink, which effectively cools the beetle as it rolls or climbs onto it

    Night sky orientation with diurnal and nocturnal eyes: dim-light adaptations are critical when the moon is out of sight

    Get PDF
    The visual systems of many animals feature energetically costly specializations to enable them to function in dim light. It is often unclear, however, how large the behavioural benefit of these specializations is, because a direct comparison in a behaviourally relevant task between closely related day- and night-active species is not usually possible. Here we compared the orientation performance of diurnal and nocturnal species of dung beetles, Scarabaeus (Kheper) lamarcki and Scarabaeus satyrus, respectively, attempting to roll dung balls along straight paths both during the day and at night. Using video tracking, we quantified the straightness of paths and the repeatability of roll bearings as beetles exited a flat arena in their natural habitat or under controlled conditions indoors. Both species oriented equally well when either the moon or an artificial point light source was available, but when the view of the moon was blocked and only wide-field cues such as the lunar polarization pattern or the stars were available for orientation, nocturnal beetles were oriented substantially better. We found no evidence that ball-rolling speed changed with light level, which suggests little or no temporal summation in the visual system. Finally, we found that both diurnal and nocturnal beetles tended to choose bearings that led them towards a bright light source, but away from a dim one. Our results show that even diurnal insects, at least those with superposition eyes, could orient by the light of the moon, but that dim-light adaptations are needed for precise orientation when the moon is not visible

    Low resolution vision in a velvet worm (Onychophora)

    Get PDF
    Onychophorans, also known as velvet worms, possess a pair of simple lateral eyes, and are a key lineage with regard to the evolution of vision. They resemble ancient Cambrian forms, and are closely related to arthropods, which boast an unrivalled diversity of eye designs. Nonetheless, the visual capabilities of onychophorans have not been well explored. Here, we assess the spatial resolution of the onychophoran using behavioural experiments, three-dimensional reconstruction, anatomical and optical examinations, and modelling. Exploiting a spontaneous attraction towards dark objects, we find that can resolve stimuli that have the same average luminance as the background. Depending on the assumed contrast sensitivity of the animals, we estimate spatial resolution to be in the range of 15° to 40°. This results from an arrangement where the cornea and lens project the image largely behind the retina. The peculiar ellipsoid shape of the eye in combination with the asymmetric position and tilted orientation of the lens may improve spatial resolution in the forward direction. Nonetheless, the unordered network of interdigitating photoreceptors, which fills the whole eye chamber, precludes high acuity vision. Our findings suggest that adult specimens of cannot spot or visually identify prey or conspecifics beyond a few centimetres from the eye, but the coarse spatial resolution that the animals exhibited in our experiments is likely sufficient to find shelter and suitable microhabitats from further away. To our knowledge, this is the first evidence of resolving vision in an onychophoran

    The sea urchin Diadema africanum uses low resolution vision to find shelter and deter enemies

    Get PDF
    Many sea urchins can detect light on their body surface and some species are reported to possess image-resolving vision. Here, we measure the spatial resolution of vision in the long-spined sea urchin Diadema africanum, using two different visual responses: a taxis towards dark objects and an alarm response of spine-pointing towards looming stimuli. For the taxis response we used visual stimuli, which were isoluminant to the background, to discriminate spatial vision from phototaxis. Individual animals were placed in the centre of a cylindrical arena under bright down-welling light, with stimuli of varying angular width placed on the arena wall at alternating directions from the centre. We tracked the direction of movement of individual animals in relation to the stimuli to determine whether the animals oriented towards the stimulus. We found that D. africanum responds by taxis towards isoluminant stimuli with a spatial resolution in the range of 29–69 deg. This corresponds to a theoretical acceptance angle of 38–89 deg, assuming a contrast threshold of 10%. The visual acuity of the alarm response of D. africanum was tested by exposing animals to different sized dark looming and appearing stimuli on a monitor. We found that D. africanum displays a spine-pointing response to appearing black circles of 13–25 deg angular width, corresponding to an acceptance angle of 60–116 deg, assuming the same contrast threshold as above

    The Dung Beetle Dance: An Orientation Behaviour?

    Get PDF
    An interesting feature of dung beetle behaviour is that once they have formed a piece of dung into a ball, they roll it along a straight path away from the dung pile. This straight-line orientation ensures that the beetles depart along the most direct route, guaranteeing that they will not return to the intense competition (from other beetles) that occurs near the dung pile. Before rolling a new ball away from the dung pile, dung beetles perform a characteristic “dance,” in which they climb on top of the ball and rotate about their vertical axis. This dance behaviour can also be observed during the beetles' straight-line departure from the dung pile. The aim of the present study is to investigate the purpose of the dung beetle dance. To do this, we explored the circumstances that elicit dance behaviour in the diurnal ball-rolling dung beetle, Scarabaeus (Kheper) nigroaeneus. Our results reveal that dances are elicited when the beetles lose control of their ball or lose contact with it altogether. We also find that dances can be elicited by both active and passive deviations of course and by changes in visual cues alone. In light of these results, we hypothesise that the dung beetle dance is a visually mediated mechanism that facilitates straight-line orientation in ball-rolling dung beetles by allowing them to 1) establish a roll bearing and 2) return to this chosen bearing after experiencing a disturbance to the roll path

    "Eating addiction", rather than "food addiction", better captures addictive-like eating behavior

    Get PDF
    Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved. This review has been compiled by scientists of the NeuroFAST consortium (The Integrated Neurobiology of Food Intake, Addiction and Stress; www.neurofast.eu), a research program that aims to reveal neurobiological and psychological mechanisms underlying habit-forming addictive processes related to the overconsumption of highly palatable food. The research leading to these results has received funding from the European Union's Seventh Framework programme for research, technological development and demonstration under grant agreement no. 245009.Peer reviewedPublisher PD

    Natural visual cues eliciting predator avoidance in fiddler crabs

    No full text
    To efficiently provide an animal with relevant information, the design of its visual system should reflect the distribution of natural signals and the animal's tasks. In many behavioural contexts, however, we know comparatively little about the moment-to-moment information-processing challenges animals face in their daily lives. In predator avoidance, for instance, we lack an accurate description of the natural signal stream and its value for risk assessment throughout the prey's defensive behaviour. We characterized the visual signals generated by real, potentially predatory events by video-recording bird approaches towards an Uca vomeris colony. Using four synchronized cameras allowed us to simultaneously monitor predator avoidance responses of crabs. We reconstructed the signals generated by dangerous and non-dangerous flying animals, identified the cues that triggered escape responses and compared them with those triggering responses to dummy predators. Fiddler crabs responded to a combination of multiple visual cues (including retinal speed, elevation and visual flicker) that reflect the visual signatures of distinct bird and insect behaviours. This allowed crabs to discriminate between dangerous and non-dangerous events. The results demonstrate the importance of measuring natural sensory signatures of biologically relevant events in order to understand biological information processing and its effects on behavioural organization
    corecore