995 research outputs found

    A Smooth Trajectory Generation Algorithm for Addressing Higher-Order Dynamic Constraints in Nanopositioning Systems

    Get PDF
    AbstractThe generation of a time-optimal feedrate trajectory has received significant attention in CNC machining and robotics applications. Most of the existing feedrate planning algorithms take velocity and acceleration into the consideration for capability constraints. The introduction of higher order dynamic states, such as jerk and/or jounce into the feedrate scheduling problem makes generating computationally efficient solutions while simultaneously guaranteeing optimality a challenging problem, as the dimension of the planning problem is increased accordingly. This paper proposes a heuristic trajectory planning algorithm that can provide a near optimal trajectory for problems with higher order dynamic states. The algorithm starts with a non-optimal but feasible velocity trajectory, which is interpolated from a number of knot points by piece-wise spline interpolation with high order continuity. Then the trajectory is improved by scanning the interpolating knot points and increasing the velocity at each knot points while maintaining the feasibility of the resulting trajectory. A near optimal trajectory is achieved when the improvement in travel time is neglectable from the last scan iteration. The algorithm supports the incorporation of high order dynamic states (up to fifth order derivative of position) in constraints for optimization without sacrificing the computational efficiency. Examples including linear and curved toolpaths are presented to illustrate the effectiveness of this algorithm for high-speed contouring

    An efficient optimized independent component analysis method based on genetic algorithm

    Get PDF
    Three simulation experiments are designed to evaluate and compare the performance of three common independent component analysis implementation algorithms – FastICA, JADE, and extended-Infomax. Experiment results show that the above three algorithms can’t separate the mixtures of super-Gaussian and sub-Gaussian precisely, and FastICA fails in recovering weak source signals from mixed signals. In this case an independent component analysis algorithm, which applies genetic algorithm to minimize the difference between joint probability and product of marginal probabilities of separated signals, is proposed. The computation procedure, especially the fitness evaluation when signals are in discrete form, is discussed in detail. The validity of the proposed algorithm is proved by simulation tests. Moreover, the results indicate that the proposed algorithm outperforms the above three common algorithms significantly. Finally the proposed algorithm is applied to separate the mixture of rolling bearing sound signal and electromotor signal, and the results are satisfied

    Student perceptions of remote learning transitions in engineering disciplines during the COVID-19 pandemic: a cross-national study

    Get PDF
    This study captures student perceptions of the effectiveness of remote learning and assessment in two associated engineering disciplines, mechanical and industrial, during the COVID-19 pandemic in a cross-national study. A structured questionnaire with 24 items on a 5-point Likert scale was used. Parallel and exploratory factor analyses identified three primary subscales. The links between student perceptions and assessment outcomes were also studied. There was a clear preference for face-to-face teaching, with the highest for laboratories. Remote live lectures were preferred over recorded. Although students found the switch to remote learning helpful, group work and communication were highlighted as concern areas. Mean scores on subscales indicate a low preference for remote learning (2.23), modest delivery effectiveness (3.05) and effective digital delivery tools (3.61). Gender effects were found significant on all subscales, along with significant interactions with university and year-group. Preference for remote delivery of design-based modules was significantly higher than others

    High Bandwidth Control of Precision Motion Instrumentation

    Get PDF
    This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant bandwidth and precision improvements over the feedback controller, and the ability to achieve precision motion control at frequencies higher than multiple system resonances

    Genetic algorithm for Lagrangian support vector machine optimization and its application in diagnostic practice

    Get PDF
    In this article a genetic algorithm optimized Lagrangian support vector machine algorithm and its application in rolling bearing fault diagnosis is introduced. As an effective global optimization method, genetic algorithm is applied to find the optimum multiplier of Lagrangian support vector machine. Synthetic numerical experiments revealed the effectiveness of this genetic algorithm optimized Lagrangian support vector machine as a classifier. Then this classifier is applied to recognize faulty bearings from normal ones. Its performance is compared with that of backpropagation neural network and standard Lagrangian support vector machine. Experimental results show that the classification ability of our classifier is higher and the computing time required to find the separating plane is relative shorter

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV
    corecore