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Abstract

The generation of a time-optimal feedrate trajectory has received significant attention in CNC
machining and robotics applications. Most of the existing feedrate planning algorithms take velocity
and acceleration into the consideration for capability constraints. The introduction of higher order
dynamic states, such as jerk and/or jounce into the feedrate scheduling problem makes generating
computationally efficient solutions while simultaneously guaranteeing optimality a challenging
problem, as the dimension of the planning problem is increased accordingly. This paper proposes a
heuristic trajectory planning algorithm that can provide a near optimal trajectory for problems with
higher order dynamic states. The algorithm starts with a non-optimal but feasible velocity trajectory,
which is interpolated from a number of knot points by piece-wise spline interpolation with high order
continuity. Then the trajectory is improved by scanning the interpolating knot points and increasing
the velocity at each knot points while maintaining the feasibility of the resulting trajectory. A near
optimal trajectory is achieved when the improvement in travel time is neglectable from the last scan
iteration. The algorithm supports the incorporation of high order dynamic states (up to fifth order
derivative of position) in constraints for optimization without sacrificing the computational efficiency.
Examples including linear and curved toolpaths are presented to illustrate the effectiveness of this
algorithm for high-speed contouring.
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1 Introduction

Machining efficiency is critically important to the competitiveness of the modern manufacturing
demands, which necessitates a successful approach to minimize the time required for a numerically
controlled manufacturing system to perform a given task. The dynamic capabilities of the machine
tools or robotics need to be fully utilized to achieve the optimal performance. The capabilities from the
physical systems (e.g. actuators, servo systems) impose constraints on the feasible velocities,
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accelerations, jerks of a multi-axis, numerically controlled (NC) machines. For a target trajectory on a
specific multi-axis system, to identify an accompanying feedrate profile that can be executed in
minimum-time without exceeding the capabilities of the machine systems, is a non-trivial optimization
problem.

The off-line trajectory planning and feedrate optimization problem have been studied by many
researchers. There are a number of trajectory planning algorithms which generate trajectory to drive a
manipulator or motion system with certain joint torques or actuator forces capabilities along a given
geometric path in minimum or near-minimum time (Shin 1986; Dong 2006; Bharathi 2014; Bobrow
1983; Dong 2007; Zlajpah 1996; Timar 2005). In most of these earlier works, either the system
dynamics is simplified (for example, Coriolis and centrifugal terms are omitted in industrial robot
dynamics) or hardware capability constraints are developed without higher-order states (e.g. jerk
constraint (Dong 2007)). In these algorithms, the velocity limit curve (or boundary curve) is obtained
from the system constraints, and a bang-bang type of trajectory is generated with alternating maximum
acceleration and maximum deceleration segments. For this approach, higher-order terms and
constraints cannot be readily incorporated into the existing algorithms as their control variables are
acceleration. The other approach to address the minimum-time trajectory generation problem is to use
the optimal control framework. The problem can be easily expressed as a traditional minimum-time
problem with dynamic state and control dependent constraints and can be solved through the
application of Pontryagin’s minimum principle. A number of research works (Gourdeau 1989; Chen
1989; Shiller 1994; Tarkiainen 1993) have been expended to solve this minimum-time trajectory
planning problem by studying the optimality conditions, avoiding singularities and generating
numerical solutions. Although the optimal control framework does allow for a systemic formulation of
the minimum-time problem incorporating higher-order constraints, the nature of this problem and the
number of singular configurations one encounters in practical application make it very difficult to
obtain accurate and efficient solutions. In manufacturing applications, the feedrate scheduling and
optimization problem has been studied by several researchers in the past (Butler 1989; Imamura 1989;
Farouki 2000; Imamura 1991). Researchers have developed algorithms with a two-pass structure
(Renton 2000; Dong 2007; Bieterman 2002) to solve the minimum time feedrate optimization
problem. These algorithms are computationally efficient compared to the phase plane approaches and
optimal control methods. However, these prior approaches are still difficult to include torque rate or
jerk constraints.

Incorporating higher-order constraints (e.g. jerk and/or jounce) is very important for many
manufacturing machines. For example, without jerk constraints, the acceleration profile from the
optimization has discontinuities, which correspond to step changes in the force output demanded of
the drive, giving rise to large contouring errors, exciting vibrations in the transmission and bearing
elements of the drives, producing noise during operation and, in general, accelerating wear in the
system. These effects are even serious for flexure-based nanopositioning systems, due to their
neglectable damping. Abrupt changes in acceleration can cause severe vibration and degrade the
stability of the systems.

It is very difficult to introduce higher-order constraints into the existing algorithms, as the
complexity and the dimension of the problem are greatly increased with the addition of higher-order
constraints. In the phase plane approach, the analysis must now be performed in a three dimensional
position-velocity-acceleration phase space instead of the position-velocity phase plane. The
identification of appropriate switching points from the velocity-acceleration surface turn out to be
extremely difficult. To overcome the above mentioned hindrance, researchers developed an
acceleration continuation procedure that can be supplemented to the existing optimal algorithm
framework to make the feedrate optimization algorithm address jerk constraints (Dong 2007). These
algorithms add multiple passes to handle the arising infeasibilities in jerk profiles. Overall, these
algorithms become very complex and computationally intensive making it impractical for large scale
industrial applications. A few prior research tried to combine trajectory planning and spline
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interpolation approach to minimize cycle time while considering jerk limitations (Costantinescu 2000;
Mattmiiller 2009). In this approaches, a set of cubic splines were used to construct the trajectory in the
phase plane. The knot-point locations were chosen to be the singularity point locations in the time-
optimal motion without considering jerk. Such selection of the knot points again limits their
application in large scale optimization problem.

This paper introduces a heuristic trajectory optimization algorithm that can time-efficiently provide
a near optimal trajectory for problems with higher order dynamic states. The algorithm starts with a
non-optimal but feasible velocity trajectory, which are interpolated from a number of knot points by
piece-wise spline interpolation with high order continuity on position-velocity phase plane. Then the
trajectory is improved by scanning the interpolating knot points and increasing the velocity at each
knot points while maintaining the feasibility of the resulting trajectory. A near optimal trajectory is
achieved when the improvement in travel time is neglectable between the current and previous scan
iterations. The algorithm supports the incorporation of a variety of high order state-dependent
constraints without sacrificing the computational efficiency. Several examples including linear and
curved toolpaths are tested on a high-bandwidth multi-axis nanopositioning stage (Polit 2011), and
presented to illustrate the effectiveness of this algorithm for high-speed contouring.

2 Feedrate optimization With High Order Constraints

The minimum time feedrate optimization problem can be applied to a number of applications from
manufacturing to robotics with some uniform problem formulations. The geometric tool-path to be
followed by each individual positioning axis is given as a parametric curve in the Cartesian space i.e.

the axis positions x' are given by eq. (1),
x' =P (u):0<u<u, and1<i<n )

Where, u is a scalar parameter used to specify the geometric paths and #» is the number of axis in
the multi-axis positioning system. The points in the parametric space are usually interpolated using
common interpolation techniques (e.g. splines or linear interpolation) to obtain a smooth path in the
axis/joint space. The parameter u is sufficient to represent all the axis positions and hence referred to
as parametric position variable. The parametric velocity # = du/dt and parametric acceleration

i = dzu/ dt  and parametric jerk i can be expressed from parametric position u.

In feedrate optimization, we wish to move the positioning platform or the machine tool as fast as
possible along a certain path while obeying various system constraints. The capability constraints such
as actuator torque limitations have been widely used in the robotics and manufacturing applications,
and high order jerk constraints are very important to reduce mechanical vibration and improve the
tracking accuracy. For the parametric toolpath given in eq. (1), the velocity, acceleration, and jerk of
each axis can be expressed in the parametric terms as shown in eq. (2-4).

oy d _dP(u) .
v(u,t)—EP(u(t))—Wu(l) (2)
d d’P(u) . ., dP(u)
a(u,u,t):Ev(t): du(zu)u(t) + diu)u(t) ©)
o d AP AP dP()
(i1 == a(0) = diu)u(t)+3 du(zu)u(t)u(t)+ du(zu)u(r) 4

The actuator torque limitations for DC motors are independent of displacement at all times, which
results in parallelogram performance envelope in velocity-acceleration plane (Renton 2000). For
nanopositioning systems, the special characteristic of the piezoelectric actuator is that the maximum
actuator force is dependent on the instantaneous position ie. its instantaneous state of
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compression/expansion (Bharathi 2014). From the trajectory planning point of view, we are interested
in the relationship between the constraints of the physical system and the corresponding feasible
dynamic states including displacement, velocity and acceleration.

All of above system dynamic state constraints can be expressed explicitly in terms of the
parametric velocity, acceleration, jerk and even higher states as well as the path geometry. The
constraints may be expressed in the general form,

C (uytty iyt i, ) < 0 (5)

The problem can now be stated more formally as follows:

) ©

C(u,i{,ii, u, u,) <0, Forallue [0, umax] .

. u max d
minT = _[ “
i(r)

Subject to

In System (6), a parametric velocity function u(z) is to be determined such that the entire
trajectory is executed in minimum time 7. The constraints specify the system requirements that must
be observed at all times. The minimum time trajectory planning problem is then to maximize u(t) S0

that the velocity trajectory should always be pushed upwards at the maximum value without violating
the constraints specified by the system requirements.

3 Heuristic Smooth Feedrate Optimization Algorithm

Most of the previous feedrate optimization algorithms are very difficult to be extended for
problems with higher order constraints, such as jerk and jounce. In this work, we developed a heuristic
feedrate optimization algorithm that can incorporate any constraints without any limitation on higher
order dynamic states. If we look at an optimal feedrate profile, it will be a continuous trajectory on the
u—u phase plane. At each location of u, the parametric velocity # is maximum while all the
constraints are satisfied. The high order dynamic states are constrained by the continuity and change-
rate of the resulting trajectory. For example, a C’ continuous trajectory on the u —u phase plane results
in discontinuous acceleration profile and infinite jerk. A C’ continuous trajectory on the u —u phase
plane results in continuous acceleration, jerk, jounce, and derivative jounce profiles. The capabilities
on these dynamic states (i.e. acceleration, jerk, jounce, and derivative jounce) of a physical system can
be constrained by the rate change of the trajectory on the phase plane.

In our heuristic feedrate optimization algorithm, a set of knot points in the u —u phase plane are

selected. The locations of the knot-points (u,,%,),i=0fon are fixed with equal increment of

parametric position, but these knot points are also capable to be distributed differently with non-
uniform distance from each other. The fifth order splines are interpolated from these knot-points. The
optimization algorithm is to select the maximum #, at each knot point position u, under the given
constraints of the problem. Below a formal algorithm based on polynomial spline trajectory
interpolation and point-by-point improvement is provided that can efficiently provide near optimal
solution for the feedrate optimization problem.

Algorithm: Heuristic Smooth-Trajectory Improvement Algorithm
1. Initializeu, = 0,2, = 0,u, = 0,21, = 0 and set all parametric velocities to small values which

are feasible i.e. set 11, = 0 for all the n-/ knot-points i = I to n-1.
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2. For the /" knot-point, find the maximum 1, by binary search with constraints satisfied by the
neighboring interpolated trajectory segments.

Maximize i,
affected by the current improvement.
3. Set the parametric velocity for i/ knot-point u, = 0.63(12,. )max according to the golden section

segmentation technique, so as to give more room for the best improvement performance for
the following knot-points.
i=i+lLu,, =u +Au

i+1

woB

If i<n, go step 2.

6. When i=n, calculate the total path traversal time from the current velocity trajectory. If the
improvement in traversal time, in comparison to the previous scan, is less than the set time-
improvement tolerance, the algorithm terminates. Otherwise, set i=2 and repeat the steps 2 to
6 until the path traversal time cannot be further improved.

In this algorithm, for each knot-point, a binary search technique is used to find the maximum
velocity for the current scan to improve the traversal time. When the improvement of the parametric
velocity #, for a known value satisfies all the constraints, the step-size of the next improvement trial

will double the value of the previous step. Similarly, if the current improvement of parametric velocity
causes the violation of any constraints, then the subsequent trial for improvement will be half of the
value of the previous step. The search procedure will stop when the step of the velocity improvement
is less than a given tolerance.

In the binary search for the optimal velocity Knot point under

at each knot-point, we do not need to validate 300, 1mprove!{nent
constraints for the entire trajectory. When the A
parametric velocity of the current knot-point is 250}

under improvement, the change in the velocity
only locally varies the interpolated trajectory on
phase plane. As shown in Figure 1, as the
parametric velocity at one knot point is changed
significantly by 50%, only about 2 to 3
segments before and after the current knot-point
of the interpolated trajectory have been
significantly affected. The trajectory that is far
from the current knot-point is not affected at all.
Thus we only need to check the constraints for a
few neighboring trajectory segments when
optimizing the velocity for current knot-point, Figure 1: Change parametric velocity in one knot-
which improves the efficiency of the algorithm.  point only affect the interpolated trajectory locally
When the optimal velocity (L't,. )max is found with a few segments around the knot-point.

for each knot-point, a smaller velocity

o
=]

Parametric velocity
3
g

@
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Parametric Positon u

u, = 0.63(1'1, )max is set for trajectory interpolation, so that every knot-point has enough freedom to be

uniformly pushed up towards its near-optimal value. Without such retraction, the “greedy” selection of
the local velocity will limit the improvement of the next knot-point, as any small perturbation from the
interpolation may make the trajectory around the knot-point infeasible.
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Figure 2: (a) Point to point improvement in the first scan iteration generates a feasible trajectory with
reduced traverse time. (b) After six iterations, a near optimal trajectory is achieved.

Figure 2 demonstrates the typical optimization procedure for a linear toolpath. Six knot points are
used to interpolate the trajectory on the u—u phase plane. In this algorithm, in one trajectory
improvement iteration, all the knot-points are improved one by one in sequence. The improvement on
each knot-point will push up the feedrate trajectory and reduce the traverse time of the toolpath, while
keeping the feasibility of the resulting trajectory (Figure 2(a)). At the end of one improvement
iteration/scan, we obtain a feasible trajectory whose traverse time is improved from the trajectory by
the previous iteration. In this optimization framework, the maximum parametric velocity #, for the i"

knot-point is coupled with the parametric velocities of neighboring knot-points in trajectory
interpolation. After all the knot-points are improved in one scan, the trajectory will have further space
to be pushed-upward to reduce the travel time. Figure 2(b) shows the resulting trajectory from
Iteration 1 to Iteration 6. A near optimal trajectory is achieved when the improvement in traverse time

is neglectable from the last two iterations. The results from all six improvement iterations are listed in
Table 1.

Table 1: Parametric velocity at each Knot-Point from different Improvement iterations

Knot-Points | Scan #0 Scan #1 Scan# 2 Scan #3 Scan #4 Scan #5 Scan #6
uy at PO 0 0 0 0 0 0 0
uy at P1 0 136.00 197.23 219.79 226.88 228.81 229.45
uy at P2 0 125.04 175.31 194.00 199.16 200.45 200.45
uy at P3 0 118.59 167.58 187.56 194.65 196.58 197.23
uy at P4 0 106.99 150.82 168.22 174.67 176.60 176.60
uy at P5 0 97.97 137.93 153.40 157.91 159.20 159.20
uy at P6 0 87.67 121.82 132.77 135.00 136.64 136.64
uy at P7 0 0 0 0 0 0 0
Total traverse 0 0.1240 | 0.0879 | 0.0801 0.0782 | 0.0773 | 0.0772
time (sec)

In this paper, we have used a piecewise 5" order polynomial spline interpolation to arrive at a C*
continuous trajectory. Hence constraints up to the order of derivative of jounce (fifth-derivative of
displacement) can be readily incorporated into the algorithm without any change to the framework of
algorithm or problem formulations. The heuristic smooth-trajectory generation algorithm in this paper,
unlike other optimization approaches, requires little memory and as with any heuristics algorithm, the
computational expense is much less compared with other optimization algorithms. For a set time-
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Figure 3: (a) An air-foil toolpath is used to compare the results from the heuristic trajectory
improvement algorithm and bi-directional scan algorithm. (b) High-speed nanopositioning XY stage
as the testbed. (c) Velocity, acceleration and parametric velocity profiles from bi-directional scan
algorithm. (d) Velocity, acceleration and parametric velocity profiles from heuristic trajectory
improvement tolerance, the run-time for the algorithm has a linear relationship with respect to the
length of the path and the number of trajectory optimization knot-points.

4 Validation and Case Studies

To validate the near-optimality of the heuristic trajectory improvement algorithm, we compare the
result from the algorithm in this paper with an optimality-proven bi-directional scan optimization
algorithm developed in (Dong 2006, 2007). In the bi-directional scan algorithm, a forward scan of the
toolpath was used to identify the largest feasible value for parametric velocity at each trajectory point,
and then a reversed scan is performed with the additional constraint that # should be lower than in the
forward pass. By proving the local optimality of each trajectory segment and applying the principle of
optimality, the global optimality of the resulting trajectory was demonstrated in (Dong 2006).

To make a fair comparison, the test path is taken to be the same cubic-spline air-foil shaped path
shown in Figure 3a. Both the heuristic trajectory improvement algorithm and bi-directional scan
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Figure 4: Comparison of tracking performance for air foil toolpath with and without jerk constraints.
(a) Velocity, acceleration and jerk profiles without jerk constraints. (b) Velocity, acceleration and

jerk profiles with jerk constraints. (c,d) Comparison of contouring accuracy between trajectories
without (c) and with (d) jerk constraints.

algorithm were run subject to actuator performance constraints for a nanopositioning stage as derived
in (Bharathi 2014, 2014). The two algorithms produce almost the same trajectory as shown in Figure
3c and 3d. Compared to the optimal results in traverse time from bidirectional scan algorithm
(0.2039sec), the results for heuristic trajectory improvement algorithm (0.2048sec) is only less than
0.5% worse than the optimal results. When the time-improvement tolerance (stop criteria) was
selected as 0.01% of total improvement, it took a total of 10 scans to arrive at this near-optimal result.

Besides the near optimal result provided from the heuristic trajectory improvement algorithm, it
has much better expandability than bi-directional scan algorithm. In bi-directional scan algorithm,
only velocity and acceleration related constraints can be added into the optimization problem.
However, in the heuristic trajectory improvement algorithm, dynamic states up to the fifth-derivative
of displacement can be easily applied into the optimization algorithm without changing the algorithm
structure and increasing the complexity of the algorithm.

Figure 4 compares the optimization results without and with higher order jerk constraints for the
same airfoil toolpath. The maximum jerk of the trajectory is limited to 1e+006 um/sec’.Adding the
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jerk constraints only slightly increase the computation load of the algorithm. Only a few more
iterations are added to generate the final trajectory. For the same toolpath, the execution time of the
resulting trajectory with jerk constraints is increased slightly to 0.2093 sec from 0.2048sec without
using jerk constraints. From Figure 4(a) and (b), the maximum jerk was successfully limited from very
large value to the constrained value, especially at the sharp traverse corner of the toolpath. By limiting
the maximum jerk experienced by the trajectory, significant improvement in the contouring accuracy
can be achieved, and the nanopositioning system can be used with enhanced stability.

In this study, we used a high-bandwidth parallel kinematic stage (Polit 2011) as a test platform to
carry out experimentation and obtain experimental data. For the airfoil tool path (Figure 4c and 4d),
the maximum contour error at the sharp corner has been reduced by 45% from 0.203 pm to 0.112 pm,
in comparison to the trajectory without limiting the jerk.

5 Conclusion

This paper presents a computationally efficient heuristic algorithm for feedrate optimization that
can generate near optimal trajectory for a toolpath incorporating constraints with higher order dynamic
states (e.g. jerk, jounce, and derivative of jounce). Instead of optimizing the trajectory along the
toolpath, in our algorithm, the trajectory is constructed from a set of knot points on position-velocity
phase plane by piece-wise spline interpolation with high order continuity. The algorithm starts with a
non-optimal but feasible velocity trajectory, and the trajectory is improved in its traverse time by
multiple scanning iterations to move the velocity profile upward. In each iteration, the velocity at the
knot points is improved one by one while maintaining the feasibility of the resulting trajectory. A near
optimal trajectory is achieved when the improvement in travel time is negligible from the last two scan
iterations. The developed heuristic algorithm supports the incorporation of constraints with higher
order states without sacrificing the computational efficiency. Examples including curved toolpaths
were presented to validate the effectiveness of this algorithm in nanopositioning applications.
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