11 research outputs found

    Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation

    Get PDF
    The mechanisms involved in the regulation of mammalian sperm motility are not well understood. Calcium ions (Ca(2+)) have been suggested to play a key role in the maintenance of motility; nevertheless, how Ca(2+) modulates this process has not yet been completely characterized. Ca(2+) can bind to calmodulin and this complex regulates the activity of multiple enzymes, including Ca(2+)/calmodulin-dependent protein kinases (CaM kinases). Results from this study confirmed that the presence of Ca(2+) in the incubation medium is essential for maintaining human sperm motility. The involvement of CaM kinases in Ca(2+) regulation of human sperm motility was evaluated using specific inhibitors (KN62 and KN93) or their inactive analogues (KN04 and KN92 respectively). Sperm incubation in the presence of KN62 or KN93 led to a progressive decrease in the percentage of motile cells; in particular, incubation with KN62 also reduced sperm motility parameters. These inhibitors did not alter sperm viability, protein tyrosine phosphorylation or the follicular fluid-induced acrosome reaction; however, KN62 decreased the total amount of ATP in human sperm. Immunological studies showed that Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is present and localizes to the human sperm flagellum. Moreover, CaMKIV activity increases during capacitation and is inhibited in the presence of KN62. This report is the first to demonstrate the presence of CaMKIV in mammalian sperm and suggests the involvement of this kinase in the regulation of human sperm motility.Fil: Marin Briggiler, Clara Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Jha, Kula N.. University of Virginia; Estados UnidosFil: Chertihin, Olga. University of Virginia; Estados UnidosFil: Buffone, Mariano Gabriel. Laboratorio de Estudios en Reproducción; ArgentinaFil: Herr, John C,. University of Virginia; Estados UnidosFil: Vazquez, Monica Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Visconti, Pablo E.. University of Massachussets; Estados Unido

    Identification of Unknown Protein Function Using Metabolite Cocktail Screening

    Get PDF
    SummaryProteins of unknown function comprise a significant fraction of sequenced genomes. Defining the roles of these proteins is vital to understanding cellular processes. Here, we describe a method to determine a protein function based on the identification of its natural ligand(s) by the crystallographic screening of the binding of a metabolite library, followed by a focused search in the metabolic space. The method was applied to two protein families with unknown function, PF01256 and YjeF_N. The PF01256 proteins, represented by YxkO from Bacillus subtilis and the C-terminal domain of Tm0922 from Thermotoga maritima, were shown to catalyze ADP/ATP-dependent NAD(P)H-hydrate dehydratation, a previously described orphan activity. The YjeF_N proteins, represented by mouse apolipoprotein A-I binding protein and the N-terminal domain of Tm0922, were found to interact with an adenosine diphosphoribose-related substrate and likely serve as ADP-ribosyltransferases. Crystallographic screening of metabolites serves as an efficient tool in functional analyses of uncharacterized proteins

    TSSK3, a novel target for male contraception, is required for spermiogenesis

    Get PDF
    We have previously shown that members of the family of testis-specific serine/threonine kinases (TSSKs) are post-meiotically expressed in testicular germ cells and in mature sperm in mammals. The restricted post-meiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggest that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the TSSK6 knock-out (KO) mice and of the double TSSK1/TSSK2 KO. The aim of this study was to develop KO mouse models of TSSK3 and to validate this kinase as a target for the development of a male contraceptive. We used CRISPR/Cas9 technology to generate the TSSK3 KO allele on B6D2F1 background mice. Male heterozygous pups were used to establish three independent TSSK3 KO lines. After natural mating of TSSK3 KO males, females that presented a plug (indicative of mating) were monitored for the following 24 days and no pregnancies or pups were found. Sperm numbers were drastically reduced in all three KO lines and, remarkably, round spermatids were detected in the cauda epididymis of KO mice. From the small population of sperm recovered, severe morphology defects were detected. Our results indicate an essential role of TSSK3 in spermiogenesis and support this kinase as a suitable candidate for the development of novel nonhormonal male contraceptives.Fil: Nayyab, Saman. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Caraballo, Diego Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Jha, Kula N.. No especifíca;Fil: Teves, Maria E.. University of Virginia; Estados UnidosFil: Cui, Wei. University of Massachussets; Estados UnidosFil: Georg, Gunda I.. University of Minnesota; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados Unido

    Mechanisms of cerebellar tonsil herniation in patients with Chiari malformations as guide to clinical management

    Get PDF
    Background The pathogenesis of Chiari malformations is incompletely understood. We tested the hypothesis that different etiologies have different mechanisms of cerebellar tonsil herniation (CTH), as revealed by posterior cranial fossa (PCF) morphology. Methods In 741 patients with Chiari malformation type I (CM-I) and 11 patients with Chiari malformation type II (CM-II), the size of the occipital enchondrium and volume of the PCF (PCFV) were measured on reconstructed 2D-CT and MR images of the skull. Measurements were compared with those in 80 age- and sex-matched healthy control individuals, and the results were correlated with clinical findings. Results Significant reductions of PCF size and volume were present in 388 patients with classical CM-I, 11 patients with CM-II, and five patients with CM-I and craniosynostosis. Occipital bone size and PCFV were normal in 225 patients with CM-I and occipitoatlantoaxial joint instability, 55 patients with CM-I and tethered cord syndrome (TCS), 30 patients with CM-I and intracranial mass lesions, and 28 patients with CM-I and lumboperitoneal shunts. Ten patients had miscellaneous etiologies. The size and area of the foramen magnum were significantly smaller in patients with classical CM-I and CM-I occurring with craniosynostosis and significantly larger in patients with CM-II and CM-I occurring with TCS. Conclusions Important clues concerning the pathogenesis of CTH were provided by morphometric measurements of the PCF. When these assessments were correlated with etiological factors, the following causal mechanisms were suggested: (1) cranial constriction; (2) cranial settling; (3) spinal cord tethering; (4) intracranial hypertension; and (5) intraspinal hypotension

    Data from: TSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis

    No full text
    Spermiogenesis includes transcriptional silencing, chromatin condensation and extensive morphological changes as spermatids transform into sperm. Chromatin condensation involves histone hyperacetylation, transitory DNA breaks, histone H2AX Ser139 phosphorylation (γH2AX), and replacement of histones by protamines. Previously, we reported that the spermatid protein kinase TSSK6 is essential for fertility in mice, but its specific role in spermiogenesis is unknown. Here, we show that TSSK6 expression is spatiotemporally coincident with γH2AX formation in nuclei of developing mouse spermatids. RNA-Seq analysis demonstrates that genetic ablation of Tssk6 does not impact gene expression or silencing in spermatids. However, loss of TSSK6 blocks γH2AX formation, even though the timing and level of the transient DNA breaks is unaltered. Further, Tssk6 KO sperm contained increased histones H3 and H4, and protamine 2 precursor/intermediate(s) indicative of a defective histone to protamine transition. These results demonstrate that TSSK6 is required for γH2AX formation during spermiogenesis, and also link γH2AX to the histone-to-protamine transition and male fertility

    RNA-Seq data of WT and Tssk6 KO spermatids

    No full text
    Spermatids were purified from three sets of adult wild type (WT) and Tssk6 knockout (KO), total RNA was isolated, RNA-Seq libraries were prepared using Illumina TruSeq Stranded mRNA sample preparation kit, and sequenced on Illumina HiSeq 2500. Quality of raw data was assessed and passed by FastQC and reads were mapped to the reference genome (Mus musculus_UCSC_mm10). Cufflinks (v2.2.1) was used to estimate transcript levels represented by FPKM (fragments per kilo bases per million mapped reads) and differential expression between samples was determined by Cuffdiff (v.2.2.1). Student’s t-test was performed to calculate the P values

    Identification of a Novel HSP70-binding Cochaperone Critical to HSP90-mediated Activation of Small Serine/Threonine Kinase*

    No full text
    We previously reported the identification of small serine/threonine kinase (SSTK) that is expressed in postmeiotic germ cells, associates with HSP90, and is indispensable for male fertility. Sperm from SSTK-null mice cannot fertilize eggs in vitro and are incapable of fusing with eggs that lack zona pellucida. Here, using the yeast two-hybrid screen, we have discovered a novel SSTK-interacting protein (SIP) that is expressed exclusively in testis. The gene encoding SIP is restricted to mammals and encodes a 125-amino acid polypeptide with a predicted tetratricopeptide repeat domain. SIP is co-localized with SSTK in the cytoplasm of spermatids as they undergo restructuring and chromatin condensation, but unlike SSTK, is not retained in the mature sperm. SIP binds to SSTK with high affinity (Kd ∼10 nm), and the proteins associate with each other when co-expressed in cells. In vitro, SIP inhibited SSTK kinase activity, whereas the presence of SIP in cells resulted in enzymatic activation of SSTK without affecting Akt or MAPK activity. SIP was found to be associated with cellular HSP70, and analyses with purified proteins revealed that SIP directly bound HSP70. Importantly, SSTK recruited SIP onto HSP90, and treatment of cells with the specific HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, completely abolished SSTK catalytic activity. Hence, these findings demonstrate that HSP90 is essential for functional maturation of the kinase and identify SIP as a cochaperone that is critical to the HSP90-mediated activation of SSTK
    corecore