234 research outputs found

    Integrating archaeology and ancient DNA analysis to address invasive species colonization in the Gulf of Alaska

    Get PDF
    The intentional and unintentional movement of plants and animals by humans has transformed ecosystems and landscapes globally. Assessing when and how a species was introduced are central to managing these transformed landscapes, particularly in island environments. In the Gulf of Alaska, there is considerable interest in the history of mammal introductions and rehabilitating Gulf of Alaska island environments by eradicating mammals classified as invasive species. The Arctic ground squirrel (Urocitellus parryii) is of concern because it affects vegetation and seabirds on Gulf of Alaska islands. This animal is assumed to have been introduced by historic settlers; however, ground squirrel remains in the prehistoric archaeological record of Chirikof Island, Alaska, challenge this timeline and suggest they colonized the islands long ago. We used 3 lines of evidence to address this problem: direct radiocarbon dating of archaeological squirrel remains; evidence of prehistoric human use of squirrels; and ancient DNA analysis of dated squirrel remains. Chirikof squirrels dated to at least 2000 years ago, and cut marks on squirrel bones suggested prehistoric use by people. Ancient squirrels also shared a mitochondrial haplotype with modern Chirikof squirrels. These results suggest that squirrels have been on Chirikof longer than previously assumed and that the current population of squirrels is closely related to the ancient population. Thus, it appears ground squirrels are not a recent, human‐mediated introduction and may have colonized the island via a natural dispersal event or an ancient human translocation.We thank T. Rick, D. Grayson, R. Fleischer, M. Hawkins, A. West, and C. Mikeska for their contributions to this research. We also thank 3 reviewers and the editors of Conservation Biology who greatly improved this paper. This work was funded by the National Geographic Society, the University of Maine, the Smithsonian Institution, and Boston University. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. (National Geographic Society; University of Maine; Smithsonian Institution; Boston University)Published versio

    Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (\u3ci\u3eUrocyon littoralis\u3c/i\u3e)

    Get PDF
    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are pre- dicted to be strong on islands and both could drive population divergence and specia- tion. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Chan- nel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mech- anism driving population divergence among island fox populations. In particular, pop- ulations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential

    Sponge Mass Mortalities in a Warming Mediterranean Sea: Are Cyanobacteria-Harboring Species Worse Off?

    Get PDF
    Mass mortality events are increasing dramatically in all coastal marine environments. Determining the underlying causes of mass mortality events has proven difficult in the past because of the lack of prior quantitative data on populations and environmental variables. Four-year surveys of two shallow-water sponge species, Ircinia fasciculata and Sarcotragus spinosulum, were carried out in the western Mediterranean Sea. These surveys provided evidence of two severe sponge die-offs (total mortality ranging from 80 to 95% of specimens) occurring in the summers of 2008 and 2009. These events primarily affected I. fasciculata, which hosts both phototrophic and heterotrophic microsymbionts, while they did not affect S. spinosulum, which harbors only heterotrophic bacteria. We observed a significant positive correlation between the percentage of injured I. fasciculata specimens and exposure time to elevated temperature conditions in all populations, suggesting a key role of temperature in triggering mortality events. A comparative ultrastructural study of injured and healthy I. fasciculata specimens showed that cyanobacteria disappeared from injured specimens, which suggests that cyanobacterial decay could be involved in I. fasciculata mortality. A laboratory experiment confirmed that the cyanobacteria harbored by I. fasciculata displayed a significant reduction in photosynthetic efficiency in the highest temperature treatment. The sponge disease reported here led to a severe decrease in the abundance of the surveyed populations. It represents one of the most dramatic mass mortality events to date in the Mediterranean Sea

    Five carbon- and nitrogen-bearing species in a hot giant planet's atmosphere

    Get PDF
    The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiation conditions. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour and carbon monoxide in their atmospheres; this has been studied in terms of scaled solar composition under the usual assumption of chemical equilibrium. Both molecules as well as hydrogen cyanide were found in the atmosphere of HD 209458b, a well studied hot Jupiter (with equilibrium temperature around 1,500 kelvin), whereas ammonia was tentatively detected there and subsequently refuted. Here we report observations of HD 209458b that indicate the presence of water (H2O), carbon monoxide (CO), hydrogen cyanide (HCN), methane (CH4), ammonia (NH3) and acetylene (C2H2), with statistical significance of 5.3 to 9.9 standard deviations per molecule. Atmospheric models in radiative and chemical equilibrium that account for the detected species indicate a carbon-rich chemistry with a carbon-to-oxygen ratio close to or greater than 1, higher than the solar value (0.55). According to existing models relating the atmospheric chemistry to planet formation and migration scenarios, this would suggest that HD 209458b formed far from its present location and subsequently migrated inwards. Other hot Jupiters may also show a richer chemistry than has been previously found, which would bring into question the frequently made assumption that they have solar-like and oxygen-rich compositions.Comment: As part of the Springer Nature Content Sharing Initiative, it is possible to access a view-only version of this paper by using the following SharedIt link: https://rdcu.be/cifr

    Biochemical Recurrence Surrogacy for Clinical Outcomes After Radiotherapy for Adenocarcinoma of the Prostate

    Get PDF
    PURPOSE: The surrogacy of biochemical recurrence (BCR) for overall survival (OS) in localized prostate cancer remains controversial. Herein, we evaluate the surrogacy of BCR using different surrogacy analytic methods. MATERIALS AND METHODS: Individual patient data from 11 trials evaluating radiotherapy dose escalation, androgen deprivation therapy (ADT) use, and ADT prolongation were obtained. Surrogate candidacy was assessed using the Prentice criteria (including landmark analyses) and the two-stage meta-analytic approach (estimating Kendall's tau and the R2). Biochemical recurrence-free survival (BCRFS, time from random assignment to BCR or any death) and time to BCR (TTBCR, time from random assignment to BCR or cancer-specific deaths censoring for noncancer-related deaths) were assessed. RESULTS: Overall, 10,741 patients were included. Dose escalation, addition of short-term ADT, and prolongation of ADT duration significantly improved BCR (hazard ratio [HR], 0.71 [95% CI, 0.63 to 0.79]; HR, 0.53 [95% CI, 0.48 to 0.59]; and HR, 0.54 [95% CI, 0.48 to 0.61], respectively). Adding short-term ADT (HR, 0.91 [95% CI, 0.84 to 0.99]) and prolonging ADT (HR, 0.86 [95% CI, 0.78 to 0.94]) significantly improved OS, whereas dose escalation did not (HR, 0.98 [95% CI, 0.87 to 1.11]). BCR at 48 months was associated with inferior OS in all three groups (HR, 2.46 [95% CI, 2.08 to 2.92]; HR, 1.51 [95% CI, 1.35 to 1.70]; and HR, 2.31 [95% CI, 2.04 to 2.61], respectively). However, after adjusting for BCR at 48 months, there was no significant treatment effect on OS (HR, 1.10 [95% CI, 0.96 to 1.27]; HR, 0.96 [95% CI, 0.87 to 1.06] and 1.00 [95% CI, 0.90 to 1.12], respectively). The patient-level correlation (Kendall's tau) for BCRFS and OS ranged between 0.59 and 0.69, and that for TTBCR and OS ranged between 0.23 and 0.41. The R2 values for trial-level correlation of the treatment effect on BCRFS and TTBCR with that on OS were 0.563 and 0.160, respectively. CONCLUSION: BCRFS and TTBCR are prognostic but failed to satisfy all surrogacy criteria. Strength of correlation was greater when noncancer-related deaths were considered events.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Carbon fluxes resulting from land-use changes in the Tamaulipan thornscrub of northeastern Mexico

    Get PDF
    Information on carbon stock and flux resulting from land-use changes in subtropical, semi-arid ecosystems are important to understand global carbon flux, yet little data is available. In the Tamaulipan thornscrub forests of northeastern Mexico, biomass components of standing vegetation were estimated from 56 quadrats (200 m2 each). Regional land-use changes and present forest cover, as well as estimates of soil organic carbon from chronosequences, were used to predict carbon stocks and fluxes in this ecosystem

    Biochemical Recurrence Surrogacy for Clinical Outcomes After Radiotherapy for Adenocarcinoma of the Prostate

    Get PDF
    PURPOSE: The surrogacy of biochemical recurrence (BCR) for overall survival (OS) in localized prostate cancer remains controversial. Herein, we evaluate the surrogacy of BCR using different surrogacy analytic methods. MATERIALS AND METHODS: Individual patient data from 11 trials evaluating radiotherapy dose escalation, androgen deprivation therapy (ADT) use, and ADT prolongation were obtained. Surrogate candidacy was assessed using the Prentice criteria (including landmark analyses) and the two-stage meta-analytic approach (estimating Kendall's tau and the R2). Biochemical recurrence-free survival (BCRFS, time from random assignment to BCR or any death) and time to BCR (TTBCR, time from random assignment to BCR or cancer-specific deaths censoring for noncancer-related deaths) were assessed. RESULTS: Overall, 10,741 patients were included. Dose escalation, addition of short-term ADT, and prolongation of ADT duration significantly improved BCR (hazard ratio [HR], 0.71 [95% CI, 0.63 to 0.79]; HR, 0.53 [95% CI, 0.48 to 0.59]; and HR, 0.54 [95% CI, 0.48 to 0.61], respectively). Adding short-term ADT (HR, 0.91 [95% CI, 0.84 to 0.99]) and prolonging ADT (HR, 0.86 [95% CI, 0.78 to 0.94]) significantly improved OS, whereas dose escalation did not (HR, 0.98 [95% CI, 0.87 to 1.11]). BCR at 48 months was associated with inferior OS in all three groups (HR, 2.46 [95% CI, 2.08 to 2.92]; HR, 1.51 [95% CI, 1.35 to 1.70]; and HR, 2.31 [95% CI, 2.04 to 2.61], respectively). However, after adjusting for BCR at 48 months, there was no significant treatment effect on OS (HR, 1.10 [95% CI, 0.96 to 1.27]; HR, 0.96 [95% CI, 0.87 to 1.06] and 1.00 [95% CI, 0.90 to 1.12], respectively). The patient-level correlation (Kendall's tau) for BCRFS and OS ranged between 0.59 and 0.69, and that for TTBCR and OS ranged between 0.23 and 0.41. The R2 values for trial-level correlation of the treatment effect on BCRFS and TTBCR with that on OS were 0.563 and 0.160, respectively. CONCLUSION: BCRFS and TTBCR are prognostic but failed to satisfy all surrogacy criteria. Strength of correlation was greater when noncancer-related deaths were considered events
    corecore