32 research outputs found

    Evaluation of very high- and very low-dose intravitreal aflibercept in patients with neovascular age-related macular degeneration.

    Get PDF
    PURPOSE: To determine bioactivity and duration of effect of intravitreal aflibercept injection (also known as vascular endothelial growth factor Trap-Eye) for neovascular age-related macular degeneration (AMD). METHODS: In this double-masked, phase 1 study, 28 patients with lesions ≤12 disc areas, ≥50% active choroidal neovascularization (CNV), and best corrected visual acuity (BCVA) ≤20/40 were randomized 1:1 to a single intravitreal injection of aflibercept 0.15 or 4 mg. The primary end point was the change from baseline in central retinal/lesion thickness (CR/LT) at week-8. Secondary outcomes were the change from baseline BCVA, the change in CNV lesion size and area of leakage, and proportion of patients requiring repeat injection at 8 weeks. RESULTS: Mean percent decrease in CR/LT for the 4-mg and 0.15-mg groups was, respectively, 34.2 versus 13.3 at week 4 (P=0.0065), 23.8 versus 5.9 at week 6 (P=0.0380), and 25.2% versus 11.3% at week 8 (P=0.150). The 4-mg group gained a mean of 4.5 letters in BCVA (6/14 patients gaining ≥10 letters) versus 1.1 letters in 0.15-mg group (1/14 gaining ≥10 letters) at week 8. Fewer patients needed retreatment in the 4-mg group at week 8. No serious adverse event or ocular inflammation was reported in either group. CONCLUSIONS: Intravitreal aflibercept 4 mg had a safety profile similar to that of the very low dose 0.15 mg, and was well-tolerated. The 4-mg dose significantly reduced foveal thickening at weeks 4 and 6, significantly improved BCVA at weeks 6, and reduced the need for repeat injection after 8 weeks compared with intravitreal aflibercept 0.15 mg in neovascular AMD patients

    Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014

    Get PDF
    INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) was established in 2004 to facilitate the development of effective treatments for Alzheimer's disease (AD) by validating biomarkers for AD clinical trials. METHODS: We searched for ADNI publications using established methods. RESULTS: ADNI has (1) developed standardized biomarkers for use in clinical trial subject selection and as surrogate outcome measures; (2) standardized protocols for use across multiple centers; (3) initiated worldwide ADNI; (4) inspired initiatives investigating traumatic brain injury and post-traumatic stress disorder in military populations, and depression, respectively, as an AD risk factor; (5) acted as a data-sharing model; (6) generated data used in over 600 publications, leading to the identification of novel AD risk alleles, and an understanding of the relationship between biomarkers and AD progression; and (7) inspired other public-private partnerships developing biomarkers for Parkinson's disease and multiple sclerosis. DISCUSSION: ADNI has made myriad impacts in its first decade. A competitive renewal of the project in 2015 would see the use of newly developed tau imaging ligands, and the continued development of recruitment strategies and outcome measures for clinical trials

    The qualification of an enrichment biomarker for clinical trials targeting early stages of Parkinson’s disease

    Get PDF
    As therapeutic trials target early stages of Parkinson’s disease (PD), appropriate patient selection based purely on clinical criteria poses significant challenges. Members of the Critical Path for Parkinson’s Consortium formally submitted documentation to the European Medicines Agency (EMA) supporting the use of Dopamine Transporter (DAT) neuroimaging in early PD. Regulatory documents included a comprehensive literature review, a proposed analysis plan of both observational and clinical trial data, and an assessment of biomarker reproducibility and reliability. The research plan included longitudinal analysis of the Parkinson Research Examination of CEP-1347 Trial (PRECEPT) and the Parkinson’s Progression Markers Initiative (PPMI) study to estimate the degree of enrichment achieved and impact on future trials in subjects with early motor PD. The presence of reduced striatal DAT binding based on visual reads of single photon emission tomography (SPECT) scans in early motor PD subjects was an independent predictor of faster decline in UPDRS Parts II and III as compared to subjects with scans without evidence of dopaminergic deficit (SWEDD) over 24 months. The EMA issued in 2018 a full Qualification Opinion for the use of DAT as an enrichment biomarker in PD trials targeting subjects with early motor symptoms. Exclusion of SWEDD subjects in future clinical trials targeting early motor PD subjects aims to enrich clinical trial populations with idiopathic PD patients, improve statistical power, and exclude subjects who are unlikely to progress clinically from being exposed to novel test therapeutics

    The ALSFRS-R Summit: a global call to action on the use of the ALSFRS-R in ALS clinical trials

    Get PDF
    The Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS) was developed more than 25 years ago as an instrument to monitor functional change over time in patients with ALS. It has since been revised and extended to meet the needs of high data quality in ALS trials (ALSFRS-R), however a full re-validation of the scale was not completed. Despite this, the scale has remained a primary outcome measure in clinical trials. We convened a group of clinical trialists to discuss and explore opportunities to improve the scale and propose alternative measures. In this meeting report, we present a call to action on the use of the ALSFRS-Revised scale in clinical trials, focusing on the need for (1) harmonization of the ALSFRS-R administration globally, (2) alignment on a set of recommendations for clinical trial design and statistical analysis plans (SAPs), and (3) use of additional outcome measures

    2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception

    Get PDF
    The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Noradrenergic Neurons of the Rat Locus Coeruleus : Anatomical, Physiological and Pharmacological studies

    Get PDF
    n/
    corecore