12 research outputs found

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Ein neues exergiebasiertes Konzept thermodynamischer QualitÀt und dessen Anwendung in der Energiesystembewertung und Prozessanalyse

    No full text
    In dieser Arbeit wird ein neues Konzept entwickelt, welches es ermöglicht, die Exergie von Masse- und Energieströmen als Produkt aus thermodynamischer Qualität (Wandelbarkeit) und Quantität (Wandlungsenergie) zu interpretieren. Aufbauend auf dieser Aufspaltung der Exergie in zwei neue GroÌˆĂŸen wird eine Bewertungsmethode vorgeschlagen, welche es möglich machen soll verschiedene Versorgungstechnologien auf Basis der Exergie transparenter als bisher zu vergleichen. Dabei werden die Wandlungsenergieeffizienz , welche als Grad der externen Güte interpretierbar ist und das Wandel- barkeitsverhältnis, welches sich als Grad der Prozesseignung verstehen lässt, verwendet. Das Produkt der beiden neuen GroÌˆĂŸen ist die exergetische Effizienz. Zusätzlich wird ein strukturiertes Vorgehen für die Definition der Bilanzgrenzen von Versorgungssystemen vorgeschlagen. Die Besonderheiten der Kraft-Wärme-Kopplung sowie nicht-speicherbarer erneuerbarer Energien werden dabei berücksichtigt. Die Bewertungsmethode wird beispielhaft auf Wärme- und Kälteversorgungssysteme angewendet. Weiterhin wird die Eignung der neuen Methode zur thermodynamischen Analyse anhand von einfachen thermodynamischen Prozessen sowie einer Dampf-Kompressionskältemaschine untersucht. Die Dissertation wird mit einer Diskussion der Vor- und Nachteile der neuen Methode im Vergleich zu ausschließlich exergetischer Bewertung und Analyse abgeschlossen.In this work a novel concept is developed that allows to interpret exergy associated with mass or energy transfers as a product of thermodynamic quality (transformability) and quantity (transformation energy). Based on this splitting of exergy into two novel properties an evaluation method is suggested that allows a transparent exergy-based comparison of different energy supply technologies using transformation energy efficiency, which can be interpreted as a a measure of external sophistication and transformability ratio, which indicates process suitability. The product of the two novel evaluation ratios is exergetic efficiency. Additionally, a consistent structured procedure for the evaluation of energy supply systems for domestic heating and cooling is laid out that includes a comprehensive rule-based boundary definition and an exergy-based attribution of fuel to heat from combined heat and power processes. The developed method is exemplary applied to supply systems for domestic heating and cooling as well as used for the analysis of some basic thermodynamic processes and a vapor-compression cascade refrigeration machine. The dissertation concludes with a discussion of the advantages and disadvantages of the novel analysis and evaluation method in comparison to an exclusively exergetic evaluation and analysis

    Exergy Assessment of Hybrid District Heating Systems Using Resource Exergy Analysis (REA)

    No full text
    Abstract In this paper six supply systems for a simulated energy demand scenario are compared using resource exergy analysis (REA). The analysis is complemented with an assessment of greenhouse gas emissions. The six scenarios (S) that are compared are ‱ S1: decentralized gas boilers, ‱ S2: low temperature district heating using 50% heat from a block CHP plant and 50% heat from a gas boiler, ‱ S3: decentralized air-source heat pumps, ‱ S4: a very low temperature district heating network with a central large heat pump and decentralized electrical boilers, ‱ S5: a cold district heating network using heat from the ground as a source for decentralized water-water heat pumps and ‱ S6: deep geothermal low temperature district heating network. The electricity used in all scenarios is assumed to come from PV panels that are newly built on the district. Thus, all results for hybrid energy systems can be considered best-case scenarios. Scenario 1 and Scenario 6 are intended to provide reference scenarios for the evaluation of the considered hybrid energy systems. S1 allows a comparison with the current status quo. S6 is there to show how good hybrid energy systems can be if compared to one of the best thermal district heating sources. The results of the performed analysis show that hybrid energy networks can be among the most resource saving and low carbon heat supply solutions possible. In order to achieve this outcome, it is important to ensure that the electric load generated by these systems is covered by additional GHGE-free power supply. In comparison to natural gas boilers hybrid energy systems can save more than 70% of resource exergy and over 90% of GHGE. All considered hybrid energy systems produce similar savings, so that the decision on what type of hybrid energy system is best for a given community largely depends on the heat demand density, the potential for heat networks or air-water heat exchangers and the availability of suitable heat sources apart from life-cycle cost considerations. While hybrid energy networks can be among the top solutions for decreasing resource exergy consumption and GHGE, they are not the only technology suitable for resource saving and climate friendly heat supply. Scenario 6 (Deep geothermal heat) shows that district heating using suitable thermal sources can match or even outperform best case hybrid energy networks. However, since thermal sources that can directly provide heat at the temperature levels required by the building stock can be locally limited, hybrid energy networks are one of the key technologies to supply heat to areas with high heat demand density

    LowEx Herten: innovative interkommunale Wärmeversorgung für die Neue Zeche Westerholt in Herten/Gelsenkirchen : Endbericht

    Get PDF
    Die Digitalisierung und der demografische Wandel sind Megatrends, die die Energiewende ĂŒberlagern. Mehr denn je sind daher integrierte Problemlösungskonzepte fĂŒr die Umsetzung der Energiewende gefragt. Neben den technischen Aspekten sollen diese Lösungen auf die sozio-ökonomischen Charakteristika der einzelnen Regionen und Kommunen eingehen und mögliche VerĂ€nderungen durch die Megatrends berĂŒcksichtigen. Zielsetzung des Teilprojekts war die Entwicklung eines wirtschaftlich-, ökologisch- und sozial optimalen WĂ€rmeversorgungskonzepts fĂŒr die KonversionsflĂ€che der ehemaligen Zeche Westerholt in Gelsenkirchen-Herten. Im Fokus stand das Gesamtsystem der WĂ€rmeversorgung, bestehend aus Netz, Speicher und Erzeugung. Angestrebt wurde eine zukunftsfĂ€hige Niedertemperaturversorgung (LowEx), welche Technologien der Sektorkopplung und diverse erneuerbare Energiequellen wie Solarthermie, ErdwĂ€rme und AbwĂ€rmequellen einbinden kann. Dabei wurde eine integrierte Analyse technisch-infrastruktureller sowie sozio-ökonomischer und -kultureller Umsetzungsvoraussetzungen durchgefĂŒhrt. Neben der interkommunalen Einbindung zeichnete sich das Vorhaben durch ein transdisziplinĂ€res Projektkonsortium aus Kommune, Stadtwerk, Wissenschaft, Technologieentwicklern und PlanungsbĂŒros aus

    Ein Teil dieser Arbeit wurde bereits veröffentlicht:

    No full text
    Introduction 6 1.1 Sex and the single cell: Meiosis in yeast 7 Special features of the meiotic cell cycle 8 Meiosis in Saccharomyces cerevisiae 9 1.2 Prophase of meiosis I: Recombination events during assembly 10 and disassembly of the Synaptonemal Complex The recombination pathway in meiosis 11 Chromosome morphology in meiotic prophase 14 The Synaptonemal Complex 15 Function of the Synaptonemal Complex 17 1.3 Building new cells within old ones: The morphogenetic 18 program at the end of meiosis involves de novo membrane formation Spindle pole bodies meet an additional task in meiosis 18 Discovery of proteins localizing specifically to 20 a substructure of the prospore membrane During meiosis membrane vesicles of the secretory 23 pathway are redirected to the spindle pole body Aims of this study 24 2. Results 25 2.1 Studies on the Synaptonemal complex protein Zip1p 26 Expression of Zip1p in a meiotic time course 26 Zip1p localization along synapsed chromosomes and 28 to polycomplexe
    corecore