5 research outputs found

    Differences in microbial metabolites in urine headspace of subjects with Immune Thrombocytopenia (ITP) detected by volatile organic compound (VOC) analysis and metabolomics

    Get PDF
    ITP is an organ-specific autoimmune disorder characterised by a low platelet count whose cause is uncertain. A possible factor is food intolerance, although much of the information linking this with ITP is anecdotal. The role of food intolerance in ITP was studied by replacing a normal diet with an elemental diet (E028), but this did not increase platelet counts. Clear differences, however, were apparent between the volatile organic compounds (VOCs) in the urine headspace of patients with ITP and those present in healthy volunteers, which leads to speculation that abnormal metabolic activity of the intestinal microbiome may be a factor causing ITP. However, further work is needed to confirm this. There were also differences between the VOCs of patients on a normal diet and those on the elemental diet, and in this case, the VOCs involved are very likely to be of bacterial origin, as their production is affected by dietary manipulation. Many of these VOCs are known to be toxic

    Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear

    No full text
    Vangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell are largely unknown. Here, we identify Gipc1 (GAIP C-terminus interacting protein 1) as a new interactor for Vangl2, and we show that a myosin VI-Gipc1 protein complex can regulate Vangl2 traffic in heterologous cells. Furthermore, we show that in the cochlea of MyoVI mutant mice, Vangl2 presence at the membrane is increased, and that a disruption of Gipc1 function in hair cells leads to maturation defects, including defects in hair bundle orientation and integrity. Finally, stimulated emission depletion microscopy and overexpression of GFP-Vangl2 show an enrichment of Vangl2 on the supporting cell side, adjacent to the proximal membrane of hair cells. Altogether, these results indicate a broad role for Gipc1 in the development of both stereociliary bundles and cell polarization, and suggest that the strong asymmetry of Vangl2 observed in early postnatal cochlear epithelium is mostly a ‘tissue’ polarity readout
    corecore