100 research outputs found

    Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts

    Get PDF
    A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of ÎČ-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. IMPORTANCE: The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of ÎČ-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens

    Archaeobotany in Australia and New Guinea: practice, potential and prospects

    Get PDF
    Archaeobotany is the study of plant remains from archaeological contexts. Despite Australasian research being at the forefront of several methodological innovations over the last three decades, archaebotany is now a relatively peripheral concern to most archaeological projects in Australia and New Guinea. In this paper, many practicing archaeobotanists working in these regions argue for a more central role for archaeobotany in standard archaeological practice. An overview of archaeobotanical techniques and applications is presented, the potential for archaeobotany to address key historical research questions is indicated, and initiatives designed to promote archaeobotany and improve current practices are outlined

    Archaeobotany in Australia and New Guinea: practice, potential and prospects

    Get PDF
    Archaeobotany is the study of plant remains from archaeological contexts. Despite Australasian research being at the forefront of several methodological innovations over the last three decades, archaebotany is now a relatively peripheral concern to most archaeological projects in Australia and New Guinea. In this paper, many practicing archaeobotanists working in these regions argue for a more central role for archaeobotany in standard archaeological practice. An overview of archaeobotanical techniques and applications is presented, the potential for archaeobotany to address key historical research questions is indicated, and initiatives designed to promote archaeobotany and improve current practices are outlined

    Digital Mammography and Breast Tomosynthesis Performance in Women with a Personal History of Breast Cancer, 2007-2016

    Get PDF
    Background Since 2007, digital mammography and digital breast tomosynthesis (DBT) replaced screen-film mammography. Whether these technologic advances have improved diagnostic performance has, to the knowledge of the authors, not yet been established. Purpose To evaluate the performance and outcomes of surveillance mammography (digital mammography and DBT) performed from 2007 to 2016 in women with a personal history of breast cancer and compare with data from 1996 to 2007 and the performance of digital mammography screening benchmarks. Materials and Methods In this observational cohort study, five Breast Cancer Surveillance Consortium registries provided prospectively collected mammography data linked with tumor registry and pathologic outcomes. This study identified asymptomatic women with American Joint Committee on Cancer anatomic stages 0-III primary breast cancer who underwent surveillance mammography from 2007 to 2016. The primary outcome was a second breast cancer diagnosis within 1 year of mammography. Performance measures included the recall rate, cancer detection rate, interval cancer rate, positive predictive value of biopsy recommendation, sensitivity, and specificity. Results Among 32 331 women who underwent 117 971 surveillance mammographic examinations (112 269 digital mammographic examinations and 5702 DBT examinations), the mean age at initial diagnosis was 59 years ± 12 (standard deviation). Of 1418 second breast cancers diagnosed, 998 were surveillance-detected cancers and 420 were interval cancers. The recall rate was 8.8% (10 365 of 117 971; 95% CI: 8.6%, 9.0%), the cancer detection rate was 8.5 per 1000 examinations (998 of 117 971; 95% CI: 8.0, 9.0), the interval cancer rate was 3.6 per 1000 examinations (420 of 117 971; 95% CI: 3.2, 3.9), the positive predictive value of biopsy recommendation was 31.0% (998 of 3220; 95% CI: 29.4%, 32.7%), the sensitivity was 70.4% (998 of 1418; 95% CI: 67.9%, 72.7%), and the specificity was 98.1% (114 331 of 116 553; 95% CI: 98.0%, 98.2%). Compared with previously published studies, interval cancer rate was comparable with rates from 1996 to 2007 in women with a personal history of breast cancer and was higher than the published digital mammography screening benchmarks. Conclusion In transitioning from screen-film to digital mammography and digital breast tomosynthesis, surveillance mammography performance demonstrated minimal improvement over time and remained inferior to the performance of screening mammography benchmarks. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Moy and Gao in this issu

    Effect of Differential N-linked and O-linked Mannosylation on Recognition of Fungal Antigens by Dendritic Cells

    Get PDF
    BACKGROUND. An experimental approach for improving vaccine efficacy involves targeting antigens to mannose receptors (MRs) on dendritic cells (DCs) and other professional antigen presenting cells. Previously, we demonstrated that mannosylated Pichia pastoris-derived recombinant proteins exhibited increased immunogenicity compared to proteins lacking mannosylation. In order to gain insight into the mechanisms responsible for this observation, the present study examined the cellular uptake of the mannosylated and deglycosylated recombinant proteins. METHODOLOGY/PRINCIPAL FINDINGS. Utilizing transfected cell lines, roles for the macrophage mannose receptor (MMR, CD206) and DC-SIGN (CD209) in the recognition of the mannosylated, but not deglycosylated, antigens were demonstrated. The uptake of mannosylated antigens into murine bone marrow-derived DCs (BMDCs) was inhibited by yeast mannans (YMs), suggesting a mannose-specific C-type lectin receptor-dependent process, while the uptake of deglycosylated antigens remained unaffected. In particular, antigens with both N-linked and extensive O-linked mannosylation showed the highest binding and uptake by BMDCs. Finally, confocal microscopy studies revealed that both mannosylated and deglycosylated P. pastoris-derived recombinant proteins localized in MHC class II+ compartments within BMDCs. CONCLUSIONS/SIGNIFICANCE. Taken together with our previous results, these data suggest that increased uptake by mannose-specific C-type lectin receptors is the major mechanism responsible for the enhanced antigenicity seen with mannosylated proteins. These findings have important implications for vaccine design and contribute to our understanding of how glycosylation affects the immune response to eukaryotic pathogens.National Institutes of Health (RO1 AI25780, RO1 AI37532

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group.

    Get PDF
    Funder: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)Funder: National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, the Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering and the Clinical and Translational Science Award Program (CTSA) at Case Western Reserve University.Funder: Susan G Komen Foundation (CCR CCR18547966) and a Young Investigator Grant from the Breast Cancer Alliance.Funder: The Canadian Cancer SocietyFunder: Breast Cancer Research Foundation (BCRF), Grant No. 17-194Assessment of tumor-infiltrating lymphocytes (TILs) is increasingly recognized as an integral part of the prognostic workflow in triple-negative (TNBC) and HER2-positive breast cancer, as well as many other solid tumors. This recognition has come about thanks to standardized visual reporting guidelines, which helped to reduce inter-reader variability. Now, there are ripe opportunities to employ computational methods that extract spatio-morphologic predictive features, enabling computer-aided diagnostics. We detail the benefits of computational TILs assessment, the readiness of TILs scoring for computational assessment, and outline considerations for overcoming key barriers to clinical translation in this arena. Specifically, we discuss: 1. ensuring computational workflows closely capture visual guidelines and standards; 2. challenges and thoughts standards for assessment of algorithms including training, preanalytical, analytical, and clinical validation; 3. perspectives on how to realize the potential of machine learning models and to overcome the perceptual and practical limits of visual scoring

    Kepler K2 Campaign 9: II. First space-based discovery of an exoplanet using microlensing

    Get PDF
    We report on the discovery of a bound exoplanetary microlensing event from a blind search of data gathered from Campaign 9 of the Kepler K2 mission (K2C9). K2-2016-BLG-0005Lb is a densely sampled, binary caustic-crossing microlensing event with caustic entry and exit points that are resolved in the K2C9 data, enabling the lens-source relative proper motion to be measured. We have fitted a binary microlens model to the K2 dataset, and to simultaneous observations from the Optical Gravitational Lensing Experiment (OGLE-IV), Canada-France-Hawaii Telescope (CFHT), Microlensing Observations in Astrophysics (MOA-2), the Korean Microlensing Telescope Network (KMTNet), and the United Kingdom InfraRed Telescope (UKIRT). Whilst the ground-based data only sparsely sample the binary caustic, they provide a clear detection of parallax that allows us to break completely the microlensing mass-position-velocity degeneracy and measure the planet's mass directly. We find a host mass of 0.58±0.03 M⊙0.58\pm0.03 ~{\rm M}_\odot and a planetary mass of 1.1±0.1 MJ1.1 \pm 0.1 ~{\rm M_J}. The system lies at a distance of 5.2±0.2 5.2 \pm 0.2~kpc from Earth towards the Galactic bulge. The projected physical separation of the planet from its host is found to be 4.2±0.3 4.2 \pm 0.3~au which, for circular orbits, corresponds to a=4.4−0.4+1.9 a = 4.4^{+1.9}_{-0.4}~au and period P=13−2+9 P = 13^{+9}_{-2}~yr, making K2-2016-BLG-0005Lb a close Jupiter analogue. Though previous exoplanet microlensing events have included space-based data, this event is the first bound microlensing exoplanet to be discovered from space-based data. Even through a space telescope not designed for microlensing studies, this result highlights the advantages for exoplanet microlensing discovery that come from continuous, high-cadence temporal sampling that is possible from space. (Abridged).Comment: 17 pages. Submitted to MNRA
    • 

    corecore