100 research outputs found

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through 2005 June and represents the completion of the SDSS-I project (whose successor, SDSS-II, will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 deg^2 and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 deg^2 of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus Cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations

    A Photometric Metallicity Estimate of the Virgo Stellar Overdensity

    Get PDF
    We determine photometric metal abundance estimates for individual main-sequence stars in the Virgo Overdensity (VOD), which covers almost 1000 deg^2 on the sky, based on a calibration of the metallicity sensitivity of stellar isochrones in the gri filter passbands using field stars with well-determined spectroscopic metal abundances. Despite the low precision of the method for individual stars, we derive [Fe/H] = -2.0 +/-0.1 (internal) +/-0.5 (systematic) for the metal abundance of the VOD from photometric measurements of 0.7 million stars in the Northern Galactic hemisphere with heliocentric distances from ~10 kpc to ~20 kpc. The metallicity of the VOD is indistinguishable, within Delta [Fe/H] < 0.2, from that of field halo stars covering the same distance range. This initial application suggests that the SDSS gri passbands can be used to probe the properties of main-sequence stars beyond ~10 kpc, complementing studies of nearby stars from more metallicity-sensitive color indices that involve the u passband.Comment: 5 pages, 3 figures, Accepted for publication in ApJ Letter

    SEGUE-2 Limits on Metal-Rich Old-Population Hypervelocity Stars In the Galactic Halo

    Full text link
    We present new limits on the ejection of metal-rich old-population hypervelocity stars from the Galactic center (GC) as probed by the SEGUE-2 survey. Our limits are a factor of 3-10 more stringent than previously reported, depending on stellar type. Compared to the known population of B-star ejectees, there can be no more than 30 times more metal-rich old-population F/G stars ejected from the GC. Because B stars comprise a tiny fraction of a normal stellar population, this places significant limits on a combination of the GC mass function and the ejection mechanism for hypervelocity stars. In the presence of a normal GC mass function, our results require an ejection mechanism that is about 5.5 times more efficient at ejecting B-stars compared to low-mass F/G stars.Comment: 18 pages including 5 figures; Submitted to Ap

    The SEGUE Stellar Parameter Pipeline. IV. Validation with an Extended Sample of Galactic Globular and Open Clusters

    Full text link
    Spectroscopic and photometric data for likely member stars of five Galactic globular clusters (M3, M53, M71, M92, and NGC 5053) and three open clusters (M35, NGC 2158, and NGC 6791) are processed by the current version of the SEGUE Stellar Parameter Pipeline (SSPP), in order to determine estimates of metallicities and radial velocities for the clusters. These results are then compared to values from the literature. We find that the mean metallicity () and mean radial velocity () estimates for each cluster are almost all within 2{\sigma} of the adopted literature values; most are within 1{\sigma}. We also demonstrate that the new version of the SSPP achieves small, but noteworthy, improvements in estimates at the extrema of the cluster metallicity range, as compared to a previous version of the pipeline software. These results provide additional confidence in the application of the SSPP for studies of the abundances and kinematics of stellar populations in the Galaxy.Comment: 98 pages, 31 figures; accepted for publication in A

    Automatic log analysis with NLP for the CMS workflow handling

    Get PDF
    The central Monte-Carlo production of the CMS experiment utilizes the WLCG infrastructure and manages daily thousands of tasks, each up to thousands of jobs. The distributed computing system is bound to sustain a certain rate of failures of various types, which are currently handled by computing operators a posteriori. Within the context of computing operations, and operation intelligence, we propose a Machine Learning technique to learn from the operators with a view to reduce the operational workload and delays. This work is in continuation of CMS work on operation intelligence to try and reach accurate predictions with Machine Learning. We present an approach to consider the log files of the workflows as regular text to leverage modern techniques from Natural Language Processing (NLP). In general, log files contain a substantial amount of text that is not human language. Therefore, different log parsing approaches are studied in order to map the log files’ words to high dimensional vectors. These vectors are then exploited as feature space to train a model that predicts the action that the operator has to take. This approach has the advantage that the information of the log files is extracted automatically and the format of the logs can be arbitrary. In this work the performance of the log file analysis with NLP is presented and compared to previous approaches

    The SEGUE Stellar Parameter Pipeline. V. Estimation of Alpha-Element Abundance Ratios From Low-Resolution SDSS/SEGUE Stellar Spectra

    Full text link
    We present a method for the determination of [alpha/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15,000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [alpha/Fe] from SDSS/SEGUE spectra (with S/N > 20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range Teff = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over the range [alpha/Fe] = [-0.1, +0.6]. For stars with [Fe/H] < -1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N > 25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [alpha/Fe] can be obtained from our approach is [Fe/H] ~ -2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] ~ -3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [alpha/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [alpha/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to ~ +0.5.Comment: 47 pages, 11 figures, 5 tables, to appear in A

    The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    Full text link
    We validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, we quantify the typical uncertainty of the SSPP values, sigma([Fe/H]) = 0.13 dex for stars in the range of 4500 K < Teff < 7500 K and 2.0 < log g < 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 < [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; we find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by about 0.3 dex.Comment: 56 pages, 8 Tables, 15 figures, submitted to the Astronomical Journa

    The fifth data release of the sloan digital sky survey

    Get PDF
    Astrophysical Journal Supplement Series, 172(2): pp. 634-644.This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through 2005 June and represents the completion of the SDSS-I project (whose successor, SDSS-II, will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 deg2 and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 deg2 of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to ‘‘standard’’ SDSS observations,DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus Cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allowprecise computations of survey geometry for statistical investigations

    Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. II. Test of Theoretical Stellar Isochrones

    Get PDF
    We perform an extensive test of theoretical stellar models for main-sequence stars in ugriz, using cluster fiducial sequences obtained in the previous paper of this series. We generate a set of isochrones using the Yale Rotating Evolutionary Code (YREC) with updated input physics, and derive magnitudes and colors in ugriz from MARCS model atmospheres. These models match cluster main sequences over a wide range of metallicity within the errors of the adopted cluster parameters. However, we find a large discrepancy of model colors at the lower main sequence (Teff < ~4500 K) for clusters at and above solar metallicity. We also reach similar conclusions using the theoretical isochrones of Girardi et al. and Dotter et al., but our new models are generally in better agreement with the data. Using our theoretical isochrones, we also derive main-sequence fitting distances and turn-off ages for five key globular clusters, and demonstrate the ability to derive these quantities from photometric data in the Sloan Digital Sky Survey. In particular, we exploit multiple color indices (g - r, g - i, and g - z) in the parameter estimation, which allows us to evaluate internal systematic errors. Our distance estimates, with an error of sigma(m - M) = 0.03-0.11 mag for individual clusters, are consistent with Hipparcos-based subdwarf fitting distances derived in the Johnson-Cousins or Stromgren photometric systems.Comment: 26 pages, 28 figures. Accepted for publication in ApJ. Version with high resolution figures available at http://spider.ipac.caltech.edu/~deokkeun/sdss_iso.pd
    • …
    corecore