147 research outputs found

    Autocrine effects of nitric oxide on HCO3- transport by rat thick ascending limb

    Get PDF
    Autocrine effects of nitric oxide on HCO3- transport by rat thick ascending limb.BackgroundIn vivo and in vitro studies have shown that nitric oxide (NO) is an important modulator of transport processes along the nephron. The thick ascending limb (TAL) plays a significant role in the urine-concentrating mechanism and in the maintenance of acid/base balance.MethodsTALs from male Sprague-Dawley rats were isolated and perfused, and net bicarbonate flux (JHCO3-) was determined.ResultsIn perfused TALs, 0.5 mmol/L L-arginine (L-Arg), the substrate for NO synthase, significantly lowered JHCO3- from 35.4 ± 4.6 to 23.2 ± 2.9 pmol · mm-1· min-1, a decrease of 36.9 ± 11.6% (P < 0.025). D-Arg (0.5 mmol/L) had no effect on JHCO3- (N = 7). In the presence of 5 mmol/L L-NAME, an NO synthase (NOS) inhibitor, the addition of L-Arg did not affect TAL JHCO3- (43.4 ± 4.4 vs. 44.6 ± 5.0 pmol · mm-1· min-1). L-NAME alone (5 mmol/L) did not affect TAL JHCO3-. After removing L-Arg from the bath, JHCO3- increased from 26.2 ± 3.9 to 34.8 ± 3.2 pmol · mm-1· min-1 (P < 0.01), indicating no cytotoxicity of NO. We next investigated the effect of cGMP analogues on TAL JHCO3-. 8-Br-cGMP (50 μmol/L) and db-cGMP (50 μmol/L) significantly decreased JHCO3- by 26.3 ± 9.1% and 35.1 ± 11.6%, respectively. In the presence of cGMP (50 μmol/L), the addition of L-Arg had no effect on JHCO3-. In the presence of KT-5823 (2 μmol/L), a protein kinase G inhibitor, the addition of L-Arg did not change TAL JHCO3- (N = 5).ConclusionsWe conclude that (1) endogenously produced NO inhibits TAL JHCO3- in an autocrine manner, (2) cGMP mediates all of the effects of NO, and (3) this effect is mediated by protein kinase G activation

    Role of mesangial cells and gap junctions in tubuloglomerular feedback

    Get PDF
    Role of mesangial cells and gap junctions in tubuloglomerular feedback.BackgroundTubuloglomerular feedback (TGF) is a process whereby the resistance of the afferent arterioles delivering blood to the glomeruli is regulated by the NaCl concentration of the forming urine in the lumen of the macula densa. Intraglomerular mesangial cells are located between capillaries within the glomerulus, while extraglomerular mesangial cells are located between the macula densa and the afferent arteriole. They are electrically and chemically coupled via gap junctions. The purpose of this study was to investigate the role of mesangial cells and gap junctions in TGF using the isolated, perfused juxtaglomerular apparatus.MethodJuxtaglomerular apparatuses were dissected from male New Zealand white rabbits and perfused in vitro. The NaCl concentration at the macula densa was changed from 17/2 to 65/50 Na/Cl to initiate a TGF response. Afferent arterioles were perfused at 60 mm Hg throughout the experiment. Changes in luminal diameter caused by increasing the NaCl concentration at the macula densa were taken as the TGF response. TGF was measured before and after disrupting the gap junctions or damaging the mesangial cells in paired experiments.ResultsDuring the control period, TGF decreased afferent arteriole diameter by 2.9 ± 0.2 μm. After mesangial cells were damaged by perfusing Thy 1-1 antibody and complement into the afferent arteriole, the TGF response was completely eliminated. Separate experiments showed no statistically significant change in TGF response with time, or when antibody and complement were perfused into the macula densa lumen. The presence of Thy 1-1 antibody and complement in the afferent arteriole perfusate did not alter the ability of norepinephrine to constrict or acetylcholine to dilate the afferent arteriole. To investigate the role of gap junctions in TGF, we used heptanol to disrupt them. During the control period, TGF decreased afferent arteriole diameter by 2.9 ± 0.4 μm. After perfusing heptanol into the lumen of the afferent arteriole, the TGF response was completely eliminated. When heptanol was added to the bath, it had no significant effect on TGF response.DiscussionThe data show that after mesangial cells were selectively damaged, the constriction of the afferent arteriole induced by increasing the NaCl concentration at the macula densa was eliminated. However, such treatment had no effect when Thy 1-1 was perfused into the macula densa lumen, and did not alter the response of the afferent arteriole to norepinephrine or acetylcholine. Disruption of the gap junctions also eliminated the TGF response. These data indicate that the mesangial cells play a key role in mediating the TGF response, and that gap junctions among mesangial cells and between mesangial cells and vascular smooth muscle cells communicate the TGF signal to the afferent arteriole

    Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback

    Get PDF
    Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback.BackgroundTubuloglomerular feedback is initiated by an increase in NaCl at the macula densa lumen, which in turn increases intracellular Ca++. In the present study, we examined the role of increased intracellular Ca++ in tubuloglomerular feedback and the source of the increased Ca++. We hypothesized that an increase in intracellular Ca++ at the macula densa via the basolateral Na+/Ca++ exchanger, caused by an increase in luminal NaCl, initiates Ca++-mediated Ca++ release from intracellular stores, which is essential for tubuloglomerular feedback.MethodsRabbit afferent arterioles and attached macula densas were simultaneously microperfused in vitro. Tubuloglomerular feedback was induced by increasing macula densa Na+/Cl- from 11/10mmol/L (low) to 81/80mmol/L (high) and was measured before and after treatment.ResultsTo investigate whether elevations in intracellular Ca++ are required for tubuloglomerular feedback, the calcium ionophore A23187 or the Ca++ chelator BAPTA-AM was added to the macula densa lumen. During the control period, tubuloglomerular feedback decreased afferent arteriole diameter from 18.1 ± 1.1 μm to 15.3 ± 0.8 μm. Adding 2 × 10-6 mol/L A23187 to the low NaCl macula densa perfusate induced tubuloglomerular feedback; diameter decreased from 18.0 ± 1.0 μm to 15.4 ± 0.9 μm (N = 6; P < 0.01). After adding BAPTA-AM (25 μmol/L) to the macula densa lumen, tubuloglomerular feedback response was completely eliminated. We next studied the source of increased macula densa Ca++ in response to increased NaCl concentration. During the control period, tubuloglomerular feedback decreased afferent arteriole diameter from 18.5 ± 1.6 μm to 15.3 ± 1.2 μm (N = 6; P < 0.01). After adding the Na+/Ca++ exchanger inhibitor 2′4′-dichlorobenzamil (10 μmol/L) or KB-R7943 (30 μmol/L) to the bath, the tubuloglomerular feedback response was blocked; however, the afferent arteriole response to angiotensin II or adenosine was not altered. Next, we tested the Ca++-adenosine triphosphatase (ATPase) inhibitor thapsigargin (0.1 μmol/L), which has been reported to inhibit sarcoplasmic reticulum Ca++-ATPase activity and prevent restoration of intracellular Ca++ stores. When thapsigargin was added to the macula densa lumen, it reduced the first tubuloglomerular feedback response by 33% and completely eliminated the second and third tubuloglomerular feedback responses. In the absence of thapsigargin, there was no significant decrease in the tubuloglomerular feedback responses (N = 6). Neither the L-type Ca++ channel blocker nifedipine (25 μmol/L), nor the T-type Ca++ channel blocker pimozide (10 μmol/L), inhibited tubuloglomerular feedback when added to the macula densa lumen.ConclusionWe concluded that (1) increased intracellular Ca++ at the macula densa is required for the tubuloglomerular feedback response; (2) Na+/Ca++ exchange appears to initiate Ca++-mediated Ca++ release from intracellular stores; and (3) luminal L-type or T-type Ca++ channels are not involved in tubuloglomerular feedback

    Role of neuronal nitric oxide synthase in the macula densa

    Get PDF
    Role of neuronal nitric oxide synthase in the macula densa.BackgroundThere is evidence that macula densa nitric oxide (NO) inhibits tubuloglomerular feedback (TGF). However, TGF response is not altered in mice deficient in neuronal nitric oxide synthase (nNOS) (-/-). Furthermore, nNOS expression in the macula densa is inversely related to salt intake, yet micropuncture studies have shown that NOS inhibition potentiates TGF in rats on high sodium intake but not in rats on a low-salt diet. These inconsistencies may be due to confounding systemic factors, such as changes in circulating renin. To further clarify the role of macula densa nNOS in TGF response, independent of systemic factors, we tested the hypothesis that (1) TGF response is inversely related to sodium intake, and (2) during low sodium intake, NO produced by macula densa nNOS tonically controls the basal diameter of the afferent arteriole (Af-Art).MethodsAf-Arts and attached macula densas were simultaneously microperfused in vitro. TGF response was determined by measuring Af-Art diameter before and after increasing NaCl in the macula densa perfusate. TGF response was studied in wild-type (+/+) and nNOS knockout mice (-/-), as well as in juxtaglomerular apparatuses (JGAs) from rabbits fed a low-, normal-, or high-NaCl diet.ResultsTGF responses were similar in nNOS +/+ and -/- mice. However, in nNOS +/+ mice, 7-nitroindazole (7-NI) perfused into the macula densa significantly potentiated the TGF response (P = 0.001), while in nNOS -/- mice, this potentiation was absent. In rabbits on three different sodium diets, TGF responses were similar and were potentiated equally by 7-NI. However, in JGAs from rabbits on a low-NaCl diet, adding 7-NI to the macula densa while perfusing it with low-NaCl fluid caused Af-Art vasoconstriction, decreasing the diameter by 14% (from 21.7 ± 1.3 to 18.6 ± 1.5 μm; P < 0.001). This effect was not observed in JGAs from rabbits fed a normal- (19.0 ± 0.5 vs. 19.3 ± 0.8 μm after 7-NI) or high-NaCl diet (18.6 ± 0.7 vs. 18.4 ± 0.7 μm).ConclusionsFirst, in this in vitro preparation, chronic changes in macula densa nNOS do not play a major role in the regulation of TGF. Compensatory mechanisms may develop during chronic alteration of nNOS that keep TGF relatively constant. Second, nNOS regulates TGF response acutely. Third, the results obtained in the +/+ and -/- mice also confirm that the effect of 7-NI is due to inhibition of macula densa nNOS. Finally, during low sodium intake (without induction of TGF), the regulation of basal Af-Art resistance by macula densa nNOS suggests that NO in the macula densa helps maintain renal blood flow during the high renin secretion caused by low sodium intake

    Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs

    Get PDF
    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P \u3c 0.001; n = 9). This concentration of Ang II-stimulated O2 (-) production by 50% (1.77 ± 0.26 vs. 2.62 ± 0.36 relative lights units (RLU)/s/μg protein; P \u3c 0.04; n = 5). In the presence of the NOS inhibitor L-NAME, Ang II-stimulated O2 (-) decreased from 2.02 ± 0.29 to 1.10 ± 0.11 RLU/s/μg protein (P \u3c 0.01; n = 8). L-arginine alone did not change Ang II-stimulated O2 (-) (2.34 ± 0.22 vs. 2.29 ± 0.29 RLU/s/μg protein; n = 5). In the presence of Ang II plus the PKC α/β1 inhibitor Gö 6976, L-NAME had no effect on O2 (-) production (0.78 ± 0.23 vs. 0.62 ± 0.11 RLU/s/μg protein; n = 7). In the presence of Ang II plus apocynin, a NADPH oxidase inhibitor, L-NAME did not change O2 (-) (0.59 ± 0.04 vs. 0.61 ± ×0.08 RLU/s/μg protein; n = 5). We conclude that: (1) Ang II causes NOS to produce O2 (-) in thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate

    The Best and Worst of Contracts Decisions: An Anthology

    Full text link
    Five hundred years ago, the common law of contract was without substance. It was form-procedure. Plaintiffs picked a form of action, and common law judges made sure someone besides themselves answered all the hard questions; the parties, a jury, or a ritual determined the winner and the remedy. Judges ran a switch on a conflicts-resolution railway. Thomas More, when Chancellor of England (1529-33), urged judges to lay tracks and control the trains. The problem, he said, was that the judges, by the verdict of the jury[,] cast off all quarrels from themselves. The judges soon assumed greater authority, taking responsibility for the law\u27s substance. The consideration requirement was in place by 1539, and judges afterwards imposed doctrine upon doctrine. Over centuries, they created the common law of contract. That law is now mature, more or less, meaning that judges have tools to fix what they want to fix, and feel free to do so. The law they created-the common law of contract-is a remarkable intellectual and political achievement

    Implications of the Plastid Genome Sequence of Typha (Typhaceae, Poales) for Understanding Genome Evolution in Poaceae

    Get PDF
    Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore